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1     Summary of Objectives & Accomplishements 

1.1 Objectives 

The long-range goal of this research program is to form a new system identification paradigm that 
fulfills all the requirements of robust control design, i.e., to produce from finite measured data a 
model which includes descriptors for both dynamic and disturbance uncertainty. 

1.2 Accomplishments/New Findings 

Several directions were pursued during the reporting period: (1) least-squares related approaches 
were further investigated, (2) 'windsurfer' adaptation was completed, and (3) uncertainty model 
unfalsifkation was developed. The latter, together with some of the ideas in 'windsurfer' adaptation, 
marks a significant advance towards attaining the program objectives. The new idea is the use of 
unfalsifkation in the adaptive control framework. The main ideas are described next. 

Inspired by the work of Poolla et al.[ll], we have shown that unfalsification of the standard 
robust control design uncertainty model is the natural replacement for system identification when 
the intended use of the model is robust control. For any affine prediction error model, such as an 
ARX model, the unfalsification step requires solving a set of convex programming problems, specif- 
ically LMI problems, of which ordinary least-squares is one member. The result is an uncertainty 
tradeoff curve between model dynamic and disturbance uncertainty. Hence, a family of models 
are unfalsified from the data record. More specifically: 

• For affine models the unfalsification step is an LMI problem with a very specific structure 
which allows very rapid computations using FFTs. This makes real-time implementation 
feasible. 

• The unfalsification step is downward compatible with existing methods of identification, i.e., 
one point on the tradeoff curve is identical to classical least-squares prediction error identifi- 
cation. 

• Since all uncertainty models along the tradeoff curve are equally unfalsified, or valid, we are led 
to a natural method of model selection via closed-loop implementation and design iteration. 
Specifically, to each uncertainty model on the tradeoff curve a robust controller is designed 
and implemented on the actual system. The process starts with a cautious controller based 
on a large value of the dynamic uncertainty bound. The bound is gradually decreased, and 
the controller made more aggressive. Actual closed-loop data is used to evaluate (unfalsify or 
falsify) the controller. The process continues as long as the actual performance is better than 
that predicted by the corresponding uncertainty model and worse than that desired. If the 
desired performance is achieved, then the design is complete. If performance is worse than 
predicted but not as good as desired, then the uncertainty model has been falsified. This new 
data can then be used in the next iteration to obtain a new tradeoff curve, i.e., a new family 
of unfalsified uncertainty models. 

The methodology is extensible to many forms of nonlinear systems, but this has not been thoroughly 
explored. 

1 



1.3    Potential Applications 

Since system identification enjoys a widespread usage in the engineeering community, it is antici- 
pated that unfalsification methods will be a natural, desireable, and in some cases, an indispensable 
enhancement to existing software tools. In particular, the aerospace community is probably the 
largest user of system identification and control design, and as a result a downward compatible 
replacement which is smoothly compatible with robust control design would be much anticipated. 

A very important specific application is adaptive flight control or adaptive reconfigurable con- 
trol. In this case it is extremely important to have a design model which captures uncertainty, 
because the reconfigured controller is working in possibly a very hostile environment. In some 
cases the control objective is to maximize performance of a damaged aircraft. This is a specific 
case where unfalsification of an uncertainty model would have a significant impact to Air Force 
missions. 

There are also potential applications in civilian technology, in particular, semi-conductor man- 
ufacturing, paper mills, and other manufacturing environments which involve high performance 
requirements of sometimes very uncertain nonlinear systems. 

2     Personnel Supported 

Prof. Stephen Boyd of Stanford University has been a consultant on the project. 

Prof. Anderson of the Australian National University in Canberra, Australia has collaborated 
with Dr. Kosut on a number of occasions in the past. This year Prof. Anderson has visited Dr. 
Kosut twice at ISI. Prof. Anderson's is not supported under this contract. 

Mr. Wee-Sit Lee, a student of Prof. Anderson's received his Ph. D. this year. Mr. Lee was 
not directly supported under this contract, but under the guidance of Prof. Anderson and Dr. 
Kosut, Mr. Lee worked on a method of adaptive control and learning, referred to as "windsurfer 
adaptation," which has formed the basis for the unfalsification process described above. 

3     Publications 

Under this contract, Dr. Kosut was an author or co-author of the publications in the list to follow. 
Copies of all of these publications are included in the Appendix. 

1. R.L. Kosut and B.D.O. Anderson, "Statistical analysis of least-squares identification for ro- 
bust control design: output error case with affine paramtrization," Proc. 1993 ACC, San 
Francisco, CA, June 1993. 

2. W.S. Lee, B.D.O. Anderson, R.L. Kosut, and I.M.Y. Mareels, "A new approach to adaptive 
robust control," Int.J. Adaptive Control and Signal Processing, vol. 7, no. 3, pp. 183-212, 
May-June 1993. 

3. H. Aling and R.L. Kosut, "Unbiased least-squares estimates with structure incompatibilities," 
Proc. 1993 ECC, Groningen, The Netherlands, 29 June-2 July, 1993. 
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4. W.S. Lee, B.D.O. Anderson, I.M.Y. Mareels, and R.L. Kosut, "On some key issues in the 
windsurfer approach to adaptive control," Automatica, Vol. 31, No. 11, pp.1619-1636, 1995. 
Appeared first in Proc. SYSID 94, 10th IFAC Symposium on System Identification, Copen- 
hagen, Denmark, 4-6 July, 1994. 

5. M. Massoumnia and R.L. Kosut, "A family of norms for system identification problems," 
IEEE Trans, on Automatic Control, vol. 39, no. 5, May 1994, pp.1027-1031. Appeared first 
in Proc. 1993 ACC, San Francisco, CA, June 1993. 

6. R.L. Kosut and B.D.O. Anderson, "Least-squares parameter set estimation for robust control 
design," Proc. 1994 ACC, Baltimore, MD, 29 June-1 July, 1994. 

7. R.L. Kosut, "Uncertainty model unfalsification: a new system identification paradigm com- 
patible with robust control design," Proc. 1995 IEEE CDC, New Orleans, LA, Dec. 1995. 

8. R.L. Kosut, "Iterative adaptive control via uncertainty model unfalsification," invited session, 
1996 IFAC World Congress, San Francisco, CA, June 1996. 

4    Interactions/Transitions 

4.1 Interactions 

1. Dr. Kosut gave a plenary lecture at the 14th Benelux Meeting on Systems and Control in 
Houthalen, Belgium, March 29-31, 1995. 

2. Dr. Kosut was invited to participate in an NSF/Yale sponsered workshop on "Control using 
Logic Based Switching," which is another potential applications area for unfalsified uncer- 
tainty modeling. 

3. Dr. Kosut gave a tutorial lecture on adaptive control at the forthcoming ISA 95 industrial 
computing society conference in New Orleans, Oct. 1-6. 

4. Dr. Kosut, Prof. Gevers (Louvain University, Belgium), Prof. Bitmead (Autralian Na- 
tional University), and Prof. Smith (UC/Santa Barbara) will give a tutorial workshop at the 
forthcoming 1996 IFAC World Congress in San Francisco on the interplay between system 
identification and robust control design. 

4.2 Transitions 

Since the conceptual framework leading to the unfalsified uncertainty modeling and tradeoff curve 
has only recently been developed, no transitions have taken place. It is anticipated that this will 
occur, but first it is crucial to develop reliable and efficient software which can handle typical data 
sets, which can be quite large. Moreover, for practical use, these tools must be smoothly linked 
with current robust control design tools. 

5    Inventions, or Patent Disclosures 

None. 
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6    Expanded Discussion 

6.1 Assessment of State-of-the-Art 

Robust control design and system identification have each reached a level of acceptance by the 
engineering community because of their sound theoretical foundations and the wide availability of 
software tools based on reliable computational algorithms. However, these two methodologies do 
not have a common basis, and are at the least, philosophically incompatible. 

As described by Ljung [10], traditional transfer function identification postulates an uncertainty 
model consisting of unknown transfer function coefficients and a random exogenous disturbance with 
an unknown variance. The unknown parameters are to be estimated from a finite input/output data 
record. In contrast, the standard uncertainty model for robust control design is more realistic in 
that it includes additional parameters for describing dynamic uncertainty bounds, thereby capturing 
model limitations. 

The focus of this research effort is to develop a quantitative methodology for simultaneously es- 
timating the transfer function parameters, the noise variance, and the dynamic uncertainty bounds 
from finite-data. The need for this methodology arises in many cases where adaptive control could 
achieve a high performance capability otherwise unobtainable. 

6.2 Unfalsification 

The thesis of this research program is that traditional system identification must be modified in 
order to be compatible with robust control design. The essence of the modification is to replace 
system identification of the traditional uncertainty model with validation of the uncertainty model 
used for robust control design. In this context validation is defined as follows: 

• Given some data, a model is said to be validated if and only if it could have produced the 
data. 

As discussed by many philosophers pondering the basis of scientific knowledge, validation of a 
theory (or model) is perhaps a misnomer, as one can never prove that a model will be able to 
accurately predict the future. However, new data can falsify a model, i.e., the model may prove to 
be incapable of producing the new data. Hence, a more illuminating term is unfalsification. Thus, 
if a data record unfalsifies a model, that model is good enough to explain the current data, but 
might be falsified by a new data record. 

Clearly model unfalsification is a feasibility problem - find a member of the model set that 
is consistent with the data. But many postulated models could have produced the data. So 
what makes one validated model more special than any other? Identification, it seems, poses an 
optimization problem: pick the model that has the smallest noise variance. Why? It's not the only 
unfalsified model. 

In this past year we have taken a step towards answering this question by establishing a new 
system identification paradigm which is truly compatible with robust control design. Inspired by 
the work of Poolla et al. [11], we have shown that unfalsification of the standard robust control 
design uncertainty model is the natural replacement for system identification when the intended 
use of the model is robust control [5]. For the ARX model (or any affine prediction error model), 



the unfalsification step requires solving a set of convex programming problems specifically LMI 
problems, of which ordinary least-squares is one member. The result is an uncertainty tradeoff 
curve between model uncertainty and disturbance uncertainty. Hence, a family of models are 
unfalsified from the data record. 

Since all uncertainty models along the tradeoff curve are equally unfalsified, or valid, we are 
led to a natural method of model selection via closed-loop implementation and design iteration. 
Specifically, to each uncertainty model on the tradeoff curve a robust controller is designed and 
implemented on the actual system. The process starts with a cautious controller based on a large 
value of the dynamic uncertainty bound. The bound is gradually decreased, and the controller 
made more aggressive. Actual closed-loop data is used to evaluate (unfalsify or falsify) the con- 
troller. The process continues as long as the actual performance is better than that predicted by 
the corresponding uncertainty model and worse than that desired. If the desired performance is 
achieved, then the design is complete. If performance is worse than predicted but not as good as 
desired, then the uncertainty model has been falsified. This new data can then be used in the next 
iteration to obtain a new tradeoff curve, i.e., a new family of unfalsified uncertainty models. 

Thus, in summary, two changes must be made in the system identification process: (1) postulate 
a candidate model set which includes descriptors for both disturbance and dynamic uncertainty, and 
(2) use the data to produce unfalsified models in the candidate model set. There are clearly many 
theoretical issues to be resolved, e.g., convergence of the iterations, limitations of performance, etc. 
In addition, for the iteration to be effective, reliable and rapid computational methods need to be 
developed. Preliminary results in [5] show that the computations involved are very similar to those 
of system identification. 

6.3    Related and Supporting Research 

Replacing identification with unfalsification has been investigated and heralded by a number of 
researchers. The uncertainty tradeoff curve discussed here was first presented in [6], but at that 
time there was no unfalsification framework upon which to provide a raison d'etre for the result. 
One of the earliest attempts to formulate an unfalsification problem for robust control oriented 
uncertainty models can be found in the dissertation of Smith and related papers [16, 15]. The 
approach is based on frequency domain data with a structured block diagonal uncertainty model. 
In [11], the model validation problem is posed using time-domain data and both necessary and 
sufficient conditions are obtained. In the work of Doyle et a/.[l], a large class of unfalsification and 
identification problems are cast in an implicit linear fractional framework which clearly shows which 
problems are solvable and which are hard. Iterating and unfaslifying in closed-loop is outlined in 
the short essay by Dahleh and Doyle [2], and expanded upon in the paper by Livestone et al.[8] 
and dissertation [9]. Direct controller unfalsification is proposed by Safonov et al.[17, 18, 12] which 
uses computational techniques similar to those formulated by Poolla et al.[11]. 

Other approaches have been put forward which also involve iterating on closed-loop data but 
use traditional identification rather than unfalsification. These are reviewed in the survey paper by 
Gevers [3]. The fundamental idea is to make the identification and control design criteria identical 
by iteratively adjusting data and weighting filters, e.g., [13, 7, 20, 19]. In a related approach, 
referred to as "windsurfer" adaptation [7], the closed-loop bandwidth is increased every iteration, 
if possible, and in effect, the maximum closed-loop bandwidth is achieved. Many of these ideas can 
be hopefully made more precise by replacing the identification step with unfalsification. 
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Abstract Precise, finite-data statistical propereties are de- 
termined using a least-squares estimator based on an output 
error model with an affine parameter representation where the 
true system is of output error form, but is not in the model set. 
The purpose of the analysis is to show the effect of unmod- 
eled dynamics on the resulting closed-loop system designed 
on the basis of the estimated transfer function. This simple 
problem set-up is prototypical of the interplay between system 
identification and robust control design. 

Introduction 

The problem addressed is the following: given a finite col- 
lection of sensed sampled input/output data from an unknown 
system, what level of confidence can be assigned to a feedback 
controller design or modification. 

To make the problem both representative and analytically 
tractable, the following a priori qualitative data is assumed: 

(al)  The system which is generating the data is a discrete 
linear-time-invariant system in output error form, i.e., 

yt = {Gu)t + et (1) 

where t is the sampling time, u and y are the sensed 
input and output sequences, respectively, and e is an un- 
predictable output disturbance. The operator G is linear- 
time-invariant with unknown transfer function G(z) and 
corresponding impulse response sequence g. Thus, 

(a3) The unpredictable sequence e is zero-mean gaussian i.i.d. 
with unknown variance Ae. 

(a4) The input sequence u is deterministic, hence, indepen- 
dent of e. 

It is important to emphasize that none of the parameters that 
appear in the above assumptions are assumed to be known; 
they are only known to exist. Hence, there is no quantitative 
a priori knowledge about M, p, or Ae. 

The above qualitative assumptions do, however, impose 
varying degrees of restrictiveness. Assumption (al) imposes 
an LTI structure, which by itself is not necessarily restrictive, 
however, the output error form is very specific. This latter 
restriction, together with the gaussian assumption (a3) makes 
the statistical analysis easier without resorting to a central 
limit theorem or a law of large numbers. Assumption (a4) im- 
plies that the system is operating in open-loop, for otherwise 
« would have a component which is correlated with e. 

For control design it is desireable to obtain an estimate 
of G(z). It is standard practice to form a parametric model 
G(z,6) and estimate the free parameter 0. Although many 
parametric forms are possible, e.g., [4], for ease of analysis we 
choose the following affine FIR paramtrization: 

(Gu)( = )gkut (2) 

(a2) G(z) is stable, i.e., all the poles of G(z) are strictly inside 
the unit circle. Hence, there exist positive constants M > 
1 and p < 1 such that 

\gk\<MP
k-\ VJt > 1 (3) 

'Supported by AFOSR, Directorate of Mathematical and 
Computer Sciences, Contract No. F49620-90-C-0064, NSF 
U.S./Australia Cooperative Research Program, Travel Grant INT- 
9014152, and the Australian National University as a Visiting 
Fellow. 

' Supported by the Cooperative Rersearch Center for Robust sind 
Adaptive Control 

G(z,6) = Y^6k2 (4) 

Thus, the problem is to estimate the first n impulse response 
coefficients {gi, ■ ■ ■ ,gn}. Although we specialize to the FIR 
modeling case, all the results apply mutadis mutandis to any 
other affine model of G(z), e.g., Laguerre or Kautz models as 
described in [5]. The essence of the problem addressed here 
is, in our opinion, the motivation for the work described in 
the recent special issue [6] on system identification for robust 
control design. In comparison with [2], the smoothness pa- 
rameters M, p are not estimated by modeling the tail of the 
impulse response {jn+i, <7n+2j • • •} as a random variable. Our 
attempt here is to precisely determine the ejffect of the un- 
modeled dynamics, i.e., the tail of the impulse response, on a 
least-squares parameter estimator, without any further prior 
assumptions. 

li 



Least-Squares Estimation 

In this section we use least-squares on the measured data to 
estimate the first n impulse response coefficients {gi, g2,...} in 
(2). Towards this end, the unknown impulse response param- 
eters {ffi,. ..,ffi} are partitioned into the (finite) parameter 
vector to be estimated, 

<7i 

9n 

em." (5) 

which consists of the first n impulse response coefficients, and 
the (infinite) parameter vector 

ß = 

ffn+l 

ffn+2 enr (6) 

which is the remainder of the impulse response. These param- 

eters - the "tail" of the impulse response, {gn+i, </„+2,...} 
- can significantly bias the estimate of the "head," namely, 
{ffi > • - -, 9n}. Statisticians refer to ß as a "nuisance" parame- 
ter. Note that because G is stable, \\ß\\ is not only finite, but 
decreases exponentially as n increases. That is, using (3), 

Wßf = £ A < \ 
2 „2n M2p 

k=n+l 

Using the definition of a and ß together with (1) gives, 

Y = Xa + Xß + E 

(7) 

(8) 
where 

Y     = 

X    = 

X 

J/l 

em", E = 
ei 

VN ejv 
r- 

«0 •■•   «i_n 

em" 
UN-1 • • •      UN-n 

r- 
U_ n             U-n-1 

UN-T .-1       U.N-n-2 

e ntN      (9) 

(10) 

€IR 
Nxoo 

(11) 

Assuming that X'X € Htnxn is non-singular, i.e., u is persis- 
tently exciting of order n, the least-squares estimate of a is 
given by the well known formula: 

9i 

9n 

= arg Ä Hy - Xe\? = (X'Xy'X'Y    (12) 

where {gk | k = 1 : n } can be thought of as estimates of 
{gk | k = 1 : n}. We also take the estimate of Ae, the out- 
put error variance, as the sample-variance, 

^ll^-A'S||2 
(13) 

When ß = 0, it is well known that a and Ae are the majrimna 
likeihood estimates of a and Ae, respectively, e.g., [l]. In ot: 
case, ß ^ 0, and its effect on the estimates is the subject d. 
the next section. 

Statistical Analysis 

In this section we analyze the effect of the nuisance pa- 
rameter ß on the estimates a and Ae of a and Ae, respec- 

tively. We use the standard notation fif {p., E) to denote i 
gaussian distribution with mean p. and variance E. Like- 

wise, x (™) denotes a chi-squared distribution with m de- 

grees of freedom. Recall that if q € IRm is drawn fron. 

A/"(0,Ä) with R non-singular, then q'R~*q G \2(m). ^ 

also use \2 ("i, r) to denote a non-central chi-squared distr- 

bution with m degrees of freedom and non-centrality parame- 
ter T. To fix the definition of the non-centrality parameter, if 
q 6 IRm is drawn from AT (u, R), then q'R~lq € \7 (m, r) witi 
r = p'R~ fi. From [3], we also use: as either1 m or r -+ -x. 

X2 (m, r) — A/"(m + r, 2 (m + 2r)). Hence, X
2 (">, 0) = x

2(™ 
and as m — oo, *2(m) — A/"(m, 2m). 

It is convenient to define the "covariance" matrices,2 

E„     =     jjX'Xem."*" 

E12    =     jfX'X € IR"xco 

S22    = 
N 

x'x € m° 

(14 

(is 

0'- 
Observe that only EH can be formed from the data and bx 
assumption is invertible. 

The following theorem describes the distributions of the k?T 
random variables. 

Theorem 1  Define the parameter error, 

a = a — a 

and the output error, 

E = Y-XS 

Under assumptions (al)-(a4), 

(1- 

(16 

(i)   The parameter error a and the residual E are indeper*- 
dent and normally distributed as follows: 

S    €    A^E-'E:^,  ^EH1) (IS- 

E    €    Af (rXß, Ae • r) (2C 

where T € MN*N, given by, 

r = I„-X(X'X)-1X' (21, 

has rank N - n and is idempotent, i.e., T = T2. 

JIt can be shown that this result is also true if both morr-t«. 
2Although the matrices £12, £22 are infinite dimensional, the? 

always appear multiplying ß. Hence, these terms are bounded be- 
cause the elements in ß decay exponentially. 

If 
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(it) -y*-  and jpä'Enä have the following non-central chi- 
squared distributions: 

£*'£iiSf    €    x2 (n,  £7) (23) 

The asymptotic part of the above theorem leads to the follow- 
ing: 

Approximation 2  For sufficiently large N,ifu is white, i.e., 
(30) holds, then with high probability: 

where 

7    =    jff'EiaEri'E»/» 
Hall'     < 

(24) 

A. + Au ||/?||2 

3n A« 
AT AT 

(34) 

(35) 

6    =    /3'E22^-7 = /3'(i;22-E;2Er1
1E12)/3 (25) 

(Hi) As N —► 00, 

Ac    -    //(\e + 6,  ^(Ae+26)) (26) 

P6.S   -   ^(^ + 1,^(^ + 2,))(27) 

The results in part(i) follow directly from the underlying as- 
sumptions and definitions of the variables, and except for the 
non-zero bias terms, are standard, e.g., [1], Part (ii) is non- 
standard, in that the error statistics involve non-central chi- 
square distributions. These results are obtained by direct ap- 
peal to the relation between a normally distributed random 
variable and the non-central chi-squred statistic as stated in 
the introduction to this section. The asymptotic results in 
part(iii) follow from the asymptotic normal approximation to 
a non-central chisquare distribution as stated in the introduc- 
tion to this section. 

In part (iii) of the theorem, the asymptotic variances decay 
as 1/N. Hence, for sufficiently large N, the random variable 
approaches the mean with high probability. This leads directly 
to the following: 

Approximation 1 For sufficiently large N, the following ap- 
proximations hold with high probability, 

Large N and High Probability 

When the input is white, "large N" can be taken as, 

2(1 + 2n) A„H/?||2 

>>   (! + „)* '   '-      Ae 
(36) 

where n is the ratio of the energy in the tail to the output 
error energy. Typical values of N, e.g., 500-1000, will always 
be well in excess of variations caused by TJ. Moreover, from 
central and non-central chi-square tables (e.g., [3]), values of 
N > 100 and n > 20 make the normal approximations very 
accurate. In consequence, "high probability" is in excess of 
99.95% for typical data lengths and model orders. Similar 
numbers hold for the general case with a non-white input. 

Frequency Response Estimation 

The results of the previous section can be used to analyze 
the errors in frequency response estimation. Towards this end, 
express G(z), the true transfer function as, 

G(z) = D(z)'a + D(z)'ß 

where 

Ae 

a i-,iiCf 
n 

~N 
Ae + 7 

(28) 

(29) 

D(z) D(z) 

j-(n+l) 

(37) 

(38) 

Observe that for large N, the variance estimate Ac tends to 
over-estimate the true variance Ae. In addition, the errors a 
and Ae — Ae are driven by the "nuisence" parameter ß, i.e., 
the tail of the impulse response. 

A special case of interest is when the input u is white, i.e., 

Let G(z) denote the transfer function estimate of G(z) defined 
as 

G(z) = D(z)'S (39) 

where a is the least-squares parameter estimate from (12) of 
the the first n impulse response coefficients of G(z). Let A(z) 
denote the transfer function error defined as, 

En = Au • In, Ei2 = 0, E2 Au • jo. 

Theorem 2  If u is white, i.e., (30) holds, then: 

NX; 
Ae 

X2(;V-n,  £AU||/?||2) 

fAulR2 

In addition, as N —► 00, 

\*-+M (Ae + Au ||/?||2 ,  ^1 (Ae + 2A„ ||/?||2)) 

(30) 

(31) 

(32) 

(33) 

A(z)    =    G(z)-G(z) 

=    -D{z)'Z + D(z)'f. 

where 

D(x)'a = Y^fa - gk)z-k,    D(z)'ß =   J2   9kZ- 

(40) 

(41) 

(42) 
*=1 *=n+l 

with ä the parameter error from (17). 

From Theorem 1 the following result is obtained. 

Theorem 3   The following results hold at each frequency u>: 

IS 



(i) Normal distribution 

Mene^(F(en'ß,^D(en^ü1D(en)    (43) |A(Q1 

(Hi) Asymptotic Normality 

As N —► oo, 

where 

F(z)' = D(z)' - D(z)'ZT?Z12 (44) 

(ii) Non-central chi-squared distribution 

|A(eJ")|2 2 

JtDWX-fDie*) € *  (1'£(U;)) <45> 
ujjtfi non-centrality parameter, 

J   ^ö^-j-Eri1^^)        (46) 

(Hi) Asymptotic Normality 

As N —► oo, 

T^rf--JV(1+£(«), 2(1+2e(«))) (52) 

Part (iii) together with Approximation 2 leads to: 

Approximation 4 If u is white, i.e., ^ holds, then for 
sufficiently large N, the following approximation holds with 
high probability at each frequency w: 

\W")\2*j^ + \D(ei»)'ßf 

Robust Control Analysis 

(S3) 

|A( -■""II2 

JS-D(eJ»)-XZD(eJ») ~* ^(1 + f(u,)' 2 (1 + 2<"M 
(47) 

Part (iii) leads to the following result. 

In this section, we use the asymptotic frequency domain 
bounds to evaluate controller robustness. The goal of control 
is to reduce the output variance. Consider the LTI feedback 
controller 

« = -Ky (54) 

where K stabilizes the "estimated" FIR system 

Approximation 3   For sufficiently large N, the following ap- 
proximation holds with high probability at each frequency u: 

|A(e^)|2 * ^Z>(e>TEn1/?^") + \F(en'ß\2        (48) 

Observe that if u is white (30) then 

/>(e>TSrW)     =    0(e>T (-L/„) D(en 

=     -l~D(e3")'D(e>") = — 

This leads to the following: 

Theorem 4  If u is white, i.e., (30) holds, then at each fre- 
quency ui: 

(i)  Normal distribution 

A(0€A/-(5(0'/?, i£) (49) 

(ii) Non-central chi-squared distribution 

n 

(55) 
k=l 

Applying the control (54) to the actual system (1) yields the 
closed-loop system 

where 

V    = 

T    = 

T Q 
1+QA 

1 

1+GK 
~v <? = 

1 + QA 

K 

1 + GK 

(56) 

(57) 

with A the estimation error as denned in (40). Since the 
nominal system is stable, it follows that A, f, and Q are stable 
transfer functions. Hence, the closed-loop system is stable if 
and only if, 

H + QV'-XOI > o, VM < x (58) 

If this holds, then the spectrum of y, under closed-loop -not 
during identification- is given by: 

*»(«) = 
(50) 

T(e3w) 

l + Q(e>«)A(e><") 
Ae (59) 

with non-centrality parameter 

C[ul) =     («£\ (51) 

Suppose that u, during identification, is white, i.e., (30) 
holds. To establish stability, observe that a sufficient condition 
for stability is that, 

|Q(eJi")HA(0| < 1,  VH<x (60) 

It 
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Using the expression for |A(e-"")| in Approximation 4 and sub- 
stituting for Ae from (34). it follows that for large N, the 
closed-loop system is stable, with high probability, if, 

\Q(en\ jwM2 wih-vr) + \D(e>"Yß\ ]"\'OI2 <  1,   VH  < 7T 

(61) 
Hence, using the large N approximations, with high probabil- 
ity, the output spectrum is bounded as follows: 

**H < 
ITXOI'pe-A.U/JII2) 

(l " lQ(e"")| [$ (t - ll^ll2) + \D(e>»)'ß?\ ,/2V 

The only unknown quantity is ß. From (34), we also know 
with high probability that, 

Ae « Ae - Au \\ßf 

Since Ae must be positive, it follows that 

Wßf < Ae/Au (63) 

provides a worst-case upper bound. Observe that this bound 
is known because Ae is the computed variance estimate and 
Au is selected by the user as the input variance. As a practical 
matter, it is unlikely that ß will achieve this bound. If it did, 
then the noise variance Xe « 0, which for large N, will almost 
never occur. 

Using (3), we get 

E -j»ti < MpT- 

Hence, for large N, the closed-loop system is stable with high 
probability if, 

|Q(OI ju\|2 3n*c_       M2p2n 

N A„      (1 - p)3 
< 1, V|w| < jr        (64) 

The constants M and p are unknown, so in order to evalu- 
ate the above robustness condition, either we require a priori 
knowledge or infer the values from the first n impulse response 
coefficients a' - [ji • • -g„]. That is, define the estimates M, p 
via 

fa\ <&?-*, VJfc€[l,n] (65) 

and replace M, p with M, p. This leads to the robustness test: 

\Q(en\2 3n\^      M2p*n 

N Au 
T (1 - p)2 

< 1,   V|w| < 7T (66) 

Now, suppose that the closed-loop system is stable and the 
above inequality holds. Then the spectrum of y is bounded, 
with high probability, by: of y and u are given, respectively, 
by: 

*y(«) < 
|T(e 

ju>\|2i 

\Q(e^ —   *   i M?p?" 

(1-P)3 

1/2 
(67) 

The above bound gives an indication of the trade between 
bias and variance as the model order varies - all results being 

valid for data length N > 500 with probability in excess of 
99.95 

Concluding Remarks 

Using an output error linear plant, we have shown that 
with gaussian noise and affine models, there is a very rich 
structure in the analysis of standard least-squares estimation 

of the first n impulse response coefficients. The remaining 
coefficients bias the estimate in a precisely defined way in- 
volving non-central chi-squared statistics. These appear to be 
extremely useful in predicting model error for robust control 
design from finite data records. Much still remains to be done 
even for this restricted and analytically tractable case, partic- 
ularly in finding a means to bound the effect of the bias (the 
tail of the impulse response) without having to perform addi- 
tional identification with ever larger parameter orders. This 
ultimately may involve additional a priori quantitative knowl- 
wdge. We feel that this paper indicates a first step towards 
the more difficult problem of model structures which account 
for non-white noise, e.g., ARX or ARMAX models. 
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SUMMARY 

A new approach is given for the design of adaptive robust control in the frequency domain. Starting with 
an initial model of a stable plant and a robust stabilizing controller, the new (windsurfer) approach allows 
the bandwidth of the closed-loop system to be increased progressively through an iterative control- 
relevant system identification and control design procedure. The method deals with both undermodelling 
and measurement noise issues. Encouraging results are obtained in the simulations that illustrate the new 
idea. 

KEY WORDS   Adaptive control   Robust control   Internal model control   System identification 

1. INTRODUCTION 

It has long been understood that a key problem in control system design is to handle the 
uncertainties associated with the plant.' Two main techniques for the analysis and design of 
systems with significant uncertainties are adaptive control2 and robust control.3,4 

In the traditional approach to analysis and design of an adaptive control system2 it is 
assumed that the unknown plant can be represented by a model in which everything is known 
except for the values of a finite number of parameters. Once the parameters are estimated (and 
even during the estimation process), the principle of certainty equivalence is normally invoked 
to update the controller. Normally the unstructured uncertainties of the model are ignored in 
this approach. Therefore it is not surprising, as pointed out in Reference 5 that these adaptive 
controllers are often not robust. Further, the extensions of the traditional approach to adaptive 
control which purportedly cope with unstructured (and other) uncertainties involve conditions 
which are often hard to apply or to grasp intuitively (see e.g. References 6-8). A further 
problem with the traditional approach is that extreme transient excursions are possible even 
when global convergence and asymptotic performance are guaranteed.9 

To be more specific, we consider an adaptive control system as shown in Figure 1, where G 
is the unknown transfer function of the plant. The time axis is divided into intervals such that 

This paper was recommended for publication by editor I. Kanellakopoulos 
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o K 

Figure 1. Adaptive control system 

during the fth interval the control input applied to the plant is obtained from Ki, where K-, is 
the transfer function of the controller designed using the model G,_i obtained at the end of 
the (/- l)th time interval. 

In an adaptive control problem the ulterior objective for finding G,, an estimate of G 
updated from G;_i, is to design a controller Ki+i better than A", such that certain control 
objectives are improved. For example, if T* represents the desired complementary sensitivity 
function, then we may like to have 

GKj 
1 + GKt 

-r1 GK,-i 
l + GKi-i 

T* v/ 

Implicitly, this means we would like to minimize 

GKi 

1 + GKi 
T* v/ 

Since G, the transfer function of the plant, is unknown, we could only base our design of Ki 
on G,-_i such that 

Ki = arg min Gj-iy 

l+Gi-iy 
-r1 

V; 

Note that, as usual, we have invoked the principle of certainty equivalence. However, it is 
important to realize that 

GKi 

is not necessarily small even though 

1 + GKi 

Gj-iKj 
1+Gi-xKi 

-r1 

is minimum. This partly explains why traditional adaptive control systems, which almost 
invariably invoke the principle, of certainty equivalence, often have unsatisfactory robustness 
properties. 

In the robust control approach3,4 a controller is designed on the basis of a nominal model 
of the plant with the associated parametric and unstructured model uncertainties explicitly 
taken into account. Therefore stability robustness is guaranteed and performance robustness 
is achieved sometimes. The weakness of this approach is that it considers only the a priori 
information on the model and neglects the fact that some characteristics of the plant could be 
learnt while it is being controlled. Therefore the robust control approach tends to result in a 
conservative design in terms of performance. It is likely that a posteriori knowledge about the 
plant could be used to reduce the conservatism in a robust control design. 

3} 
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In this paper we present a new approach for the design of adaptive robust control for a 
stable plant and the related control-relevant system identification. A preliminary study of the | |li| 
problem under noiseless conditions is reported in Reference 10. The main differences of this 
paper from Reference 10 are that, instead of updating the models through finding rational 
function approximations (in the H«, sense) of certain plant parametrization and employing 
proper but non-strictly proper controllers, here we perform system identification using 
input-output data and employ strictly proper controllers. It was also shown in References 11 
and 12 that an iterative approach for model refinement and control robustness enhancement 
can be developed in the context of an Hi control problem. 

In Section 2 we describe the windsurfer approachI3 to adaptive control. In Section 3 we 
apply the windsurfer approach to an adaptive model-matching problem and formulate the 
related control-relevant system identification criterion. The relevance of the system 
identification criterion to the adaptive model-matching problem is explored further in 
Section 4. In Section 5 we apply Hansen's approach14-16 to recast the closed-loop system 
identification problem into an open-loop system identification problem. We also show that 
with appropriate filtering, the criterion used in the open-loop system identification is highly 
relevant to the windsurfer approach to adaptive model matching. In Section 6 we develop the 
relation between the approximate identification and the internal model control (IMC)4 method 
of controller design. We present the simulation results in Section 7. In Section 8 we conclude j |j 
the paper and attempt to give some reasons for the success of the method. 

2. THE WINDSURFER APPROACH TO ADAPTIVE CONTROL 

By considering how humans learn windsurfing, Anderson and Kosut13 have made the 
following observations. 

1. The human first learns to control over a limited bandwidth and learning pushes out the 
bandwidth over which an accurate model of the plant is known. 

2. The human first implements a low-gain controller and learning allows the loop to be 
tightened. 

On the basis of these observations, an adaptive robust control design philosophy, the 
windsurfer approach, is proposed in Reference 13. It recognizes that the plant characteristics 
can differ greatly from the estimated model at any one time, particularly during the initial 
learning stage. In the new design approach a low-gain controller will first be implemented and 
the control bandwidth will be small. On the basis of learning a frequency domain description 
of the plant in closed loop, with the learning process progressively increasing the bandwidth 
over which the plant is accurately known, the controller gain can be increased appropriately 
over an increasing frequency band. For details see Reference 13. Importantly, in the method 
suggested, the necessary closed-loop system identification task is transformed into an open- 
loop system identification problem through the use of coprime fractional representations as 
discussed in References 14-16. 

It was shown recently17 that the best model for control design cannot be derived from open- 
loop experiments alone. The controller to be implemented should be taken into account by the 
system identification experiments. However, this controller is not yet available, since its 
determination rests on the results of the system identification to be carried out. Hence a general 
solution to the combination of system identification and control design is necessarily iterative. 
Although the emphasis of Reference 17 is on the problem of modelling for control purposes, 
its approach is very similar to that of Reference 13. 

ii-J 
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In the next section we would like to illustrate the windsurfer approach by considering a 
model-matching problem in the context of adaptive control. 

3. ADAPTIVE MODEL MATCHING 

Let G be the unknown transfer function of the plant and let 7^ represent a desired 
complementary sensitivity function. We wish to achieve, through iterative system identification 
and control design, the minimization of the cost function 

GK 
1 + GK~ 

T* 

where K is the transfer function of a controller to be designed. 
We begin by designing a controller K\# to stabilize a known initial model Go, which may 

be obtained from an open-loop system identification exercise. If K\,o also stabilizes the 
unknown transfer function G, then we say that Kifi robustly stabilizes Go. Notice that we use 
Kjj to denote the y'th controller designed using the ;"th model which has a transfer function G,. 
In general, we attach the subscript j,i to a transfer function to denote that it is either specified 
or derived on the basis of the /th model for the plant at the y'th iteration of control design. 
Since Go may involve significant uncertainties, the resulting controller ATi.o may not be able to 
achieve a small value for 

Gotfi 
1 + Go^i.o 

r1 

while robustly stabilizing Go. In general, we need to consider how to handle the question of 
securing robust stabilization of G, by #,-,,-. This is bound up with the question of selection of 
T0. It is in fact to be expected that a sequence of T* will be selected in such a way that the 
end control objective can be approached in stages. We shall therefore proceed as follows. 

In association with each of the models G,, a sequence of controllers Kj.i is designed such that 

Kj,i = arg min 
7 

G/7 _ 7< 1 j'. Y/ (1) 1 + Giy 

where the sequence of functions Tj,i is specified with 7y+1,, normally of wider bandwidth than 
Tj,i. It is also necessary that F?,, results in a controller Ki,i that robustly stabilizes G,. A stage 
will be reached (say when j = N) where the bandwidth of the nominal closed-loop transfer 
function, 

Ts.i = 
1 + G;Ks,i 

(2) 

cannot be increased further without causing the effects of model uncertainties in G, to be too 
significant. This occurs when the value of 

TN.I— TN,I\ 

is no longer small, where 

T* 
GK, N,i 

1 + GKN.i 
(3) 

is the actual closed-loop transfer function of the system. 
At this stage it is necessary to improve the accuracy of the model in such a way that is 

W 
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relevant to the control objective. This means that we should try to find an updated model G, + i 

such that 

G, + i = arg min 
GKN,j        M^j_ 

1 + GKN,i    1 + dKs.i 
(4) 

Once Gi+i is found, we can continue to increase the closed-loop bandwidth by repeating the 
procedure described for G, previously. However, G1 + i should be used instead of G, and we 
specify a new sequence of functions Tj.i+i with 7l.l + 1 = T%.i. The iterative process is 
continued until the end control objective is achieved or it is prematurely terminated because 
of one or more of the following constraints: 

(1) fundamental performance limitations due to right-half-plane poles and zeros of the plant 
and/or models18 

(2) unstable model is obtained (This is a consequence of our simplified control design 
method. Appropriate extensions of the control design method4 allow us to deal with this 
restriction.) 

(3) finite control energy 
(4) no further improvements in the identified model can be made for a reasonably large set 

of input-output measurements. 

4. CONTROL-RELEVANT SYSTEM IDENTIFICATION 

It should be noted that the system identification criterion formulated in Section 3, 

G/ + i = arg min 
GKn,, OKs.i 

1 + GKN.i    1 + 6KN,i 
(5) 

would be the formulation of a standard rational function approximation problem provided 
that G were known. However, as opposed to an approximation problem, we are here dealing 
with a system identification problem where G is an unknown transfer function and only a finite 
number of (possibly noisy) input-output measurements are available. Despite this apparent 
difference, we must emphasize that equation (5) is exactly the dual of the criterion developed 
by Anderson and Liu19 in the controller reduction problem based on closed-loop transfer 
function consideration, where their plant and reduced-order controller are replaced by our 
controller and estimated model respectively. We can therefore draw a similar conclusion that 
in our system identification problem there is a reduced weighting placed on the range of 
frequencies where the loop gain is high. This is very appealing since it agrees with the well- 
known fact that, for a stable closed-loop system, model errors are more tolerable in the range 
of frequencies where the loop gain is allowed to be large. More importantly, as we shall explain 
below, this system identification criterion will enable us to find a new model which allows us 
to design a closed-loop system with a larger bandwidth than what the original model would 
allow. 

If we rewrite equation (5) in the form 

G,- + i = arg min 
1 BKs.i 

\ + GKN.i)\l+eKN,iJ\   6 
G-6 (6) 

we see immediately that it is the product of the actual sensitivity function 

1 
1 + GKs.i 

•I'll 

\i 

! 

IS 
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and the nominal complementary-sensitivity-function-weighted multiplicative model error 

/   Gi+lKN,i  \ /G-G, + A 
\l + Gi+iKNJ\   G, + 1   ) 

It appears that the frequency-weighting function in equation (6), which involves the unknown 
actual sensitivity function, cannot be implemented in the system identification procedure. 
However, we shall show in Section 5 that by recasting the closed-loop system identification into 
an open-loop system identification problem, we also obtain a system identification criterion 
which is equivalent to equation (6) but involves only a known frequency-weighting function. 
Therefore, for the purpose of understanding the effects of the system identification criterion 
on the identified model, we can treat the frequency-weighting function in equation (6) as a 
known quantity. 

Recall that, as described in Section 3, we were using the model G, to design a sequence of 
controllers KJJ, with increasing gain over an increasing range of frequencies, such that the 
closed-loop system has an increasing bandwidth. At the stage where j = N, the gain of the 
controller Ks,i has become so large that the high-frequency model uncertainties associated with 
d are no longer insignificant. Any attempt to increase the closed-loop bandwidth further will 
cause the magnitude of the nominal complementary-sensitivity-function-weighted 
multiplicative model error 

GiKs.i  \ (G — Gi 
l + GiKNJ\   d 

to become too large at certain frequencies, such that the system may lose performance 
robustness or even stability robustness. Therefore the gain of the controller KN.t will be limited 
and the actual sensitivity function 

1 
1 + GKs.i 

will be large beyond the existing limited closed-loop bandwidth. From equation (6) we notice 
that it is exactly in this range of frequencies, where the actual sensitivity function has large 
magnitude, that our system identification criterion will penalize the nominal complementary- 
sensitivity-function-weighted multiplicative model uncertainties of the new model G, + 1 We 
could therefore expect G, + 1 to have smaller model uncertainties, as compared with G, near 
and beyond the edge of the closed-loop bandwidth that can be achieved with G, This will 
allow us to design controllers Kj,i+i that lead to larger closed-loop bandwidth than was 
possible with G,. Hence we can say that criterion (6) is control-relevant. 

To make concrete the above discussions, we consider an example where the plant has a 
transfer function 

G_ 9 
•^ + 0-06.5 + 9 (7) 

and an initial model with the transfer function 

Co = 7TT W 
If we employ a controller which has a transfer function of the form 

K = XZ(5+1) 
s(s + 2X) (9) 

SU 
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Figure 2. Frequency-weighted multiplicative model errors 

then it can be shown that the nominal closed-loop transfer function is given by 

X2 

r=- 
(s+\f 

(10) 

Therefore X is the nominal - 6 dB bandwidth of the closed-loop system. As X is increased to 
0-5 rads"1, the actual closed-loop unit-step response, as shown in graph (a) of Figure 2, has 
excessive oscillations because the model uncertainties associated with Go are no longer 
insignificant. This is apparent in graph (b) of Figure 2, which shows the magnitude of the 
nominal complementary-sensitivity-function-weighted multiplicative model error of Go. We 
have also shown the actual sensitivity function in graph (c) of Figure 2, which indicates that, 
if it is incorporated into the system identification criterion (for which the procedure is 
described later in Sections 5 and 6), the nominal complementary-sensitivity-function-weighted 
multiplicative error in the new model Gi will be penalized in the range of frequencies near and 
beyond the existing closed-loop bandwidth of 0-5 rads"1. It can be seen from graph (d) of 
Figure 2, which shows the nominal complementary-sensitivity-function-weighted multiplicative 
error of the new model Gi, that this is indeed the case. Therefore the new model G\ will allow 
us to increase the closed-loop bandwidth beyond 0-5 rad s_1. 

5. CLOSED-LOOP SYSTEM IDENTIFICATION 

We first review a method for closed-loop system identification developed by Hansen and co- 
workers.14-16 Subsequently, in Theorem 2, we demonstrate that with appropriate signal 
filtering, Hansen's method provides a suitable framework to carry out the control-relevant 

XI 
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system identification formulated in Section 3. For the sake of expository simplicity we shall 
consider only scalar plants. We begin with the following theorem.20 

Theorem I 

If K= X\Y is a controller, where X and Y are stable proper transfer functions, and if N 
and D are stable proper transfer functions that satisfy the Bezout identity 

NX+DY=l 

then the set of all plants stabilized by the controller K is precisely the set of elements in 

9 
_(N+R 

[D-R. 
. R is a stable proper transfer function 

RX \ 

Consider the feedback system shown in Figure 3, where y and u are the measured output 
and the control input respectively, e is an unpredictable white disturbance and rt and r2 are 
user-applied inputs. It is assumed that KJJ is a known stabilizing controller, G is inexactly 
known and possibly unstable and, as is standard,21 H is imperfectly known, stable and 
inversely stable. The system identification problem is to obtain improved estimates of G and 
H from a finite interval of measured and known data {y, u,ri,n: 0 < / ^ T). 

Following Hansen,16 we introduce the stable proper transfer functions Xj,it YJJ, JV/,< and 
Dj.i which satisfy 

Kj.r 
Yj.i' 

Gi = 
A' 

NiXj.i + DiYj.i=l 

The interpretation is that G,- is a known but imperfect model of the plant which is also 
stabilized by AT/,,-. Applying Theorem 1 as shown in References 15 and 16, there exist stable 
proper transfer functions RJJ and S/.,-, with Sj,i also inversely stable, such that 

G = 

H = 

Nj+ Rj.jYj.i 
Di — Rj.jXjj 

ALI  
Di — Rj.iXj.i 

(11) 

(12) 

KM- 

H 

Figure 3. Closed-loop system 

9>S 
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'-*9~ + r \ " N, <? o, 

Or s* 

<> 

Figure 4. Closed-loop system identification 

where /?,-,,• denotes the parametrization of G using the tth model and its associated yth 
controller Kj,„ 

As a result, system identification of G and H in closed loop is equivalent to system 
identification of the stable proper transfer functions RJJ and SJJ. Using equations (11) and 
(12), we can represent the feedback system as shown in Figure 4. 

From Figure 4 we can write 

where 

However, since 

and 

equation (14) can be rewritten as 

ß = Rjja + Sj.ie 

a= Xjjy+ Yj.jU 

ß = Diy - N/u 

u = Kj,i(ri - y) + r2 

J-      Yjj 

a= Xj,-,r\ + Yj.in 

(13) 

(14) 

(15) 

(16) 

It is important to observe from equations (13), (15) and (16) that a depends only on the 
applied signals r\ and r2 operated on by known stable proper transfer functions Xjj and 
Yjj respectively, while ß depends on the measured signals y and u operated by known stable 

23 

■V 

» ; 
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proper transfer functions £>, and Ni respectively. Moreover, a is independent of the transfer 
functions G and //and the disturbance e. Hence the system identification of G and //in closed 
loop has been recast into the system identification of Rjj and Sj,i in open loop. 

We shall next state a result which is highly relevant to the system identification step of the 
windsurfer approach to adaptive control. 

Theorem 2 

Let the controller Kj,i stabilize the plant G and the model 

where N-, and £>, are stable proper transfer functions, and let 

v.  —2£LL 
1 j.i 

where Xj.j and Yj.i are stable proper transfer functions satisfying the Bezout identity 

NiXj.i + D,Yj,,= l 

Let Gi + i be another model of G, also stabilized by Kj,i and therefore having a description 

°' + 1~ n -r   X • (17) 

where r,-,,- is a stable proper transfer function. Also define the filtered output error 

S=YjAß-rj.ict) (18) 

where, with n = 0, 

a =*).,-#■,, ß = Dty-NiU 

r\ = reference signal, y = plant output, u = control input 

Thus £ is an error arising in the (open-loop) identification of RJJ through an estimate rJti. Then 
the filtered output error can be expressed as 

t _ (   GKj.j Gj + iKj,j  \ 1 „ 
\l + GKj.i    1 + Gt + iKjJ ri     1 + GKj.i 

Proof. See Appendix I. □ 

Remark 

Notice that in Theorem 2 it is necessary that Kj,t stabilizes G when the system identification 
procedure is carried out. This can be ensured by increasing the closed-loop bandwidth 
smoothly and cautiously in the controller design stages (to be described in Section 6). We 
would always detect a gradual degradation of performance robustness (while stability is still 
being maintained and the system identification procedure is being carried out) before the 
closed-loop system lost stability. 

2,0 
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(19) 

Suppose that the value of 

GKjj GjKj.t 
1 + GKj.t    1 + GiKj.i 

has become large. As it was described in Section 3, we want a new identification of G via G, + i 
for which 

GKjj Gj + \Kj,i 
l + GKj.i    l + Gi+iKj.i 

is small. We are going to use the r,.,-parametrization of Gi+i. By substituting equations (11) 
and (17) into expression (20) and noting that 

Xj.i 

(20) 

KJ.I = 

we can, after simplification, conclude that 

GKj,j Gj + iKjj 
1 + GKJJ    l + GuiKj.i 

YJ.I 

= \\Yj.,XjARj.i-rj.i)\\. (21) 

should be small. 
By using equations (13), (18) and (21), we immediately see that (for the system identification 

procedure relevant to the windsurfer approach to adaptive control) the appropriate signal 
model is 

ßi = Rj.ioci + v 

where 

0i = Yj.iß 

ai = Yj,i(x 

and v is the term related to the disturbance e. 

Remarks 

(i) Note that 

(22) 

(23) 

(24) 

Tj.i = - 
GKj. 

1 + GKjj 

is the actual closed-loop transfer function of the system and 

=   _    GiKj.i 
lj-'~ 1 + GiKj.i 

is  the  nominal  closed-loop  transfer  function  of the  system.  Therefore,  using  similar 
substitutions to these that resulted in equation (21), we can obtain 

Tj.i - fj.i = Yj.iXjARj.i - Rjj) (25) 

However, since 

Rjj = 0    v/, v/ 

I I lit 
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we therefore have 
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*j.i~ *j,i— Yj\iXj,iRj,i (26) 

By comparing the argument of the //„-norm given in expression (19) with the left-hand side 
of equation (26), we see immediately that when the value of 

GKj.t GiKj,i 
1 + GKj.i    1 + GiKj.i 

has become large, i.e. when the closed-loop properties of the actual system (Tj,t) are 
significantly different from the closed-loop properties of the nominal system (f,.,), the value of 

\\Yj.iXj.,Rj,,\\m 

will be large. 

(ii) From the signals defined in Theorem 2, we observed that /?,,,•, the transfer function to 
be identified, is excited by the signal a, where 

a = Xj,iru Xj.i = - 
Kj.i 

1 + GiKjj 

Since the nominal closed-loop transfer function of the system is 

f   —    GjKj,j 
J-'    1 + GiKj.i 

we can write 

Xj.i 
Gi 

Therefore XJJ will have large magnitude when we try to push the nominal closed-loop 
bandwidth beyond the nominal open-loop bandwidth. Since a model usually has its 
uncertainties become significant for frequencies beyond its bandwidth, from Figure 5 we see 
that if the spectrum of n is white, we automatically get the right weighting for the input to 
Rj.i for the system identification scheme. 

e  5;; /•< 

'/ 
—»■ h> -SU h< ^o-, 

__/ 
ß 

—» hi -«-* rJ.i 

-H 

>^^ 
s iC 

7 
Figure 5. Excitation of RJJ 

30. 



I 
I 
I 
I 
I 
I 
I 
I 
I 

ADAPTIVE ROBUST CONTROL 195 

(iii) It is shown in Theorem 2 that the effect of e on £ is given by 

He 
1 + GKj.i 

Notice that this is the effect of e on y attenuated by the sensitivity function of the actual 
closed-loop system. jj||| 

6. APPROXIMATE IDENTIFICATION OF THE Rj.t TRANSFER FUNCTION FOR 
IMC CONTROLLER DESIGN 

In Section 5 we have shown that the closed-loop system identification of the plant transfer !| ; 
function G can be reformulated into an open-loop system identification of the stable proper |:i;> 
transfer function Rj,, that parametrized the transfer function G via the equation 

G_Ni + RJjYj.i 

Di — RjjXjj 

In this and the following sections we shall, for simplicity, study the case where the plant 
transfer function is stable strictly proper and has no zeros on the imaginary axis of the s-plane 
and where the IMC method4 is used to design the controller AT,,,-. We shall also assume that 
all estimates G, of the plant are stable strictly proper transfer functions. 

If the model 

r -Ni 

is stable, we can let Ni = G, and D, = 1 so that 

G = Gi +        *'•' (27) 1 _ KJ.'(Jj.> 

where Qjj is a stable strictly proper transfer function that parametrized the strictly proper 
controller 

1 j.i 

and 

Q   ™    K" (28) 
^     1 + GiKj.i 

The reason for requiring QJJ and hence Kj,t to be strictly proper is that this is a necessary 
condition for the system to be robust in the presence of high-frequency parasitic or singular 
perturbation.22 We also have 

Xj.i = Qj.i YJ.,= 1-QJ.IG, 

Since the parametrization of G by /?>,,■ depends intimately on Qj.t, we shall briefly explain how 
QJJ is obtained in the design of the controller Kjj. We will use the notations nH and (1H to 
denote the numerator polynomial and the denominator polynomial respectively of a rational 
transfer function H. 
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Given a stable model 

G = — 
dc, 

where dGl has no zeros in the closed right-half s-plane, if nCl has no zeros on the imaginary 
axis of the s-plane, we can write 

n _ nCi II, (z, - s) 
Gi~       To, 

where all z,- have positive real parts and nCi has no zeros in the closed right-half s-plane. By 
writing G, as 

G, = [Gi] m [Gi] a 

where 

r _     _ nCi IT, (z * + s) 
l*-J|J m  

(z* is the complex conjugate of z/) 

n, (z, - 5) 
[G,],= 

Ui(z* + s) 

we have factored G, as a product of its minimum phase factor [G,]m and the associated all-pass 
factor [G,]a. We can find the controller 

Kj,i = arg min — * j.i 1 + Gii 

with Tj.i specified as 7^,, = F,.,[G,]a, by designing a detuned //2-optimal controller for a step 
reference input using the internal model control (IMC) approach.4 This is achieved by setting 

Qj.i= [Gi]nlFj.i (29) 

where F,-,,- is a lowpass filter of the form 

n is the relative degree of the model G, and X/,,- is selected small enough so that Kj ,• robustly 
stabilizes G,. 

In the ideal situation where G, = G, the nominal and actual closed-loop transfer functions 
of the system are equal and are given by the transfer function F/.,-[G,].. Therefore X;.,- is both 
the nominal and actual closed-loop system bandwidth with a - 3(n + 1) dB attenuation. In 
general, G,- *■ G and X,-.,- serves only as an approximate bandwidth of the actual closed-loop 
system. 

With the controller designed using the above procedure, we shall now show that the transfer 
function to be identified, Rjiit is the product of a known stable proper transfer function and 
an unknown stable strictly proper transfer function. An analysis of the form of the unknown 
factor in /*,-.,■ indicates how it can be sensibly approximated by a low-order transfer function. 
We shall first rewrite equation (27) as 

/-*     /"< 

3V 
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Then we can obtain, after substituting equations (28) and (29) into equation (30) and 

U performing some algebraic manipulations, 

Rj.,- I[G,U(s + X,„n[<f + yj*»0- dGnGl)} (3D 

I Note that equation (31) can also be written as 

Rj,i = Rj.iRj.i (32) 

where 

Rj.i=[Gi]m(s+\j.i)
n (33) 

is a known stable proper transfer function and, other than the factor s + \jj in the numerator, 

#       (s + \j,i)(dGlnc - dang) ^ 
"''' dKj.,dc + nKj,,nc 

I is an unknown stable strictly proper transfer function that depends on the unknown transfer 
function G. Therefore the problem of identifying /?,., has become one of identifying its 
unknown factor AJJ. We shall summarize this important result in the following theorems. 

I 
I 
I 
I 
I 
I 

will robustly stabilize G, for all sufficiently small values of X,-,,- ^ 0. 

| Proof. See Chaps 4 and 5 of Reference 4. □ 

Theorem 3 

Consider a plant which has an unknown stable strictly proper transfer function G and a 
model with a known stable strictly proper transfer function G,. If G and G, have no zeros 
along the imaginary axis of the s-plane and 

G,= [G,]m[Gi]a 

where [G,]m is the minimum phase factor of G, and [G,)a is the allpass factor of G,, then with 

Qj.i- [G,]m  Fj,i 

and 

where n is the relative degree of G,, the controller 

K &■' 
J-'~l-Qj.iGt 

Theorem 4 

Let the controller be designed according to the conditions stated in Theorem 3; then the 
unknown stable strictly proper transfer function to be identified, 

R     - G~Gi 

1 + QjAG-G,) 

3£ 

I 
»IT 

Mi 

n i 
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can be factorized as 

Rj.i — Rj.i Rj.i 

where Rjj is an unknown stable strictly proper transfer function to be identified and RJJ is 
a known stable proper transfer function given by 

Rl.J=  [Gi]m(S + \j,,)m 

where X^,, is the nominal closed-loop system bandwidth with a-3(«+ 1) dB attenuation. 
Furthermore, the order and the relative degree (rel deg) of the transfer function R~jj are 

respectively given by 

(order of RJJ] = {order of G) + (order of G,) - (M+ N) + 1 

rel deg {#,,,) = min(rel deg(G), rel deg(G,)) 

where M is the number of common zeros in G and G, and N is the number of common poles 
in G and G,. 

Proof. See Appendix II. □ 

Remarks 

(i) Note that the factorization of RJJ given in Theorem 4 is naturally induced by the IMC4 

controller design procedure that we have adopted. 
(ii) The poles of RJJ are the poles of 7},,-, the actual closed-loop transfer function of the 

system. 
(iii) It is important to note that Rjj = 0 if and only if G = G,. 
(iv) The order of Rjj depends on the order of G, which is an unknown. 
(v) Although Hansen's approach enables us to obtain an unbiased estimate of the transfer 

function RJJ, it should be noted that RJJ has more parameters to be estimated than G. 
Furthermore, since the order, hence the number of parameters to be identified in Rjj, increases 
while the magnitude of Rjj decreases with the stages of iteration, we would expect that under 
noisy conditions the system identification problem will become harder as the iteration process 
progresses. There is an obvious analogy in the windsurfing situation. The better is the skill of 
a windsurfer, the harder it will be for him/her to improve his/her skill further. In fact, it will 
take a long time under extreme conditions to improve his/her skill. In the system identification 
problem for RJJ the interpretation is that strong probing signals and a long record of 
measurements are necessary to achieve even a slight improvement if the closed-loop already 
has good performance and large bandwidth. 

Since we do not know the order of RJJ a priori and since we are going to identify R~JJ 

(actually Rjj) and update G, to G, + i when the step response of the actual closed-loop system 
exhibits unacceptable oscillations and/or overshoots (associated with model uncertainties), we 
expect RJJ to have complex conjugate poles. Therefore the transfer function which serves as 
an approximation of RJJ has to have an order of at least two. Moreover, since the smallest 
possible relative degree of a strictly proper transfer function is one and the relative degree of 
G is unknown, we have to assume that the relative degree of Rjj could be one. It was shown 
in equation (21) that the system identification problem is to find 

rjj = arg min || XJJYJJ(RJJ - ff)||«, (35) 

3t 
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If we define 

n.i 

Gi + i = Gi + 
1 - rj.iQj.i 

the order of the model may increase. To prevent the model order from increasing indefinitely, 
we use a frequency-weighted balanced truncation scheme19 to reduce the order of G, + i. 
Specifically, we find 

Gj + \Kj,j yKj,i 
\ + Gi + iKj,i    \+i\Kj,i 

Gi + i = arg min 

where G, + i is the reduced-order model. If the model order is restricted to m, the controller 
will be at most of order m + 1 (see controller design equations given in Theorem 3). In this way 

■ the controller complexity will be limited. 

I 

-Rjjfjj (36) 

where fj.-, is an unknown second-order stable strictly proper transfer function, then by 
substituting equations (32) and (36) into equation (35), we can show that the system 
identification problem becomes one of finding 

fjj = arg min || Xj,iYj.iRjA^J.i " *)ll- <37) PM 

Therefore, for the purpose of identifying Rj.i, the signal model can be obtained by 
appropriately modifying equation (22) and is given by 

j3i = Rj.im + v (38> 

where 

a2 = Rj.iai (39) 

and ai, ßi and v have been defined previously. Notice that the signals ßi and a2 in the model 
described by equation (38) can easily be generated, using known filters, from the control input 
u, the measured output y and the reference input n. 

Remarks 

(i) Since Yj.i is the nominal sensitivity function of the closed-loop system, we immediately 
see that the frequency shaping in the identification criterion given by equation (37) will force 
the updated model to have small modelling error at the edge of the closed-loop bandwidth 
where the nominal sensitivity function cannot be made small by the controller AT/,,-. 

(ii) It is important to ensure that the input is sufficiently exciting when we are carrying out 
a system identification experiment. 

(iii) Under noisy conditions the signals to be used in the system identification process should 
be appropriately lowpass filtered. In a discrete time implementation this can be accomplished 
by an anti-aliasing filter. 

(iv) When updating the model using the equation 

Z*l 
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7. SIMULATION RESULTS 

With reference to Figure 3, we shall present some simulation results of applying the windsurfer 
approach to the control of a system with 

C(5) = (,+ l)(^+
90-06, + 9)' »M'1 

and e as zero-mean disturbance with a constant energy density of 0-0025 from 0 to 100 Hz. 
We first summarize the procedure in the following algorithm. 

Step 1 

Set G, = Go, where G0 is the transfer function of an initial model of the plant. 

Step 2 

Factorize G, as 

G,= [G,]m[G,]a 

where [G,]m is the minimum phase factor of G, with a relative degree of n and [G,-L is the 
associated allpass factor of G,. 

Step 3 

For j = 1 find 

Qj.i Kj.i = - 
1 + Qj.iGi 

with 

Qj.,= [Gi]^Fj.i 

where the parameter X.,-.,- in the transfer function 

is chosen such that Kj., robustly stabilizes G, in the sense that the filtered (noisy) step response 
of the actual closed-loop system has, at most, few oscillations and/or overshoots. Stop here 
if such a robust stabilizing controller cannot be found. Also stop here if the robust stabilizing 
controller results in a closed-loop system which meets the specified bandwidth. Otherwise 
proceed to the next step. 

Step 4 

Let j -j + 1 and set X,., = X,--,,, + e for small e> 0 and redesign the controller K,, using 
the equations given in Step 3. Stop here if the design produces a robust stabilizing controller 
with the closed-loop system satisfying the specified bandwidth. Otherwise repeat this step if 
Kj.i robustly stabilizes G,; else proceed to the next step. 
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Step 5 

Perform control-relevant system identification to obtain fjMi. For this purpose we apply an 
algorithm such as least squares to obtain an estimate f/,,- of R~j,i which satisfies 

This depends on using the signals 

0i = Yj.,{y ~ Gut), a2 = Rj.iYj.iXjjri 

(We actually used discrete time samples of ßi and a2 and an output error algorithm to 
construct a strictly causal second-order estimate from which a continuous time strictly proper 
fj,i was obtained.) Using r/,,-, the model is updated via the following set of equations: 

Rj.i = [Gi]m(s + Xjj)", rj.i = Rj.ifj.i, C1 + i = Gi + ,    n'' 

Step 6 

If Gi+i is stable, find the reduced-order model 

1 + Gi+iKj,i    1 + rjKj,i 
(5, + i = arg nyn 

Otherwise stop here. 

Step 7 

Set Gi = <5, + i and return to Step 2. 

Remarks 

(i) In the algorithm, system identification has to be carried out when 

\\TN.i-TN,i\U 

is no longer small. Broadly speaking, this will correspond to a significant difference between 
the designed nominal performance (depending on Gi and KN.I) and the actual performance 
(depending on G and KN.I)- In particular, the observed step response may exhibit many more 
oscillations and/or overshoots than the designed values. This is not of course the same thing 
as guaranteeing that the i/«, error above has became large, but neither is it unrelated. To be 
more precise, we define the peak gain of a system whose transfer function is T by 

yrBi«  sup   l|7V|L 

This is also equal to the total variation of the system's unit-step response23 (roughly the sum 
of all consecutive peak-to-valley differences in the unit-step response). It can be shown24 that 
if T is a stable strictly proper transfer function, then 

||7-|U< || 7-11,^2/» || riu 

where p is the order of the transfer function T. Now we consider the peak error 

||7V,i-fw||, 

■i   i 

i   i 

^ 
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Since 

II r^.,- - fW./lh ^ II r^.i |[, -1| 7W.,- Hi 

then if the observed step response of_TN.i exhibits many more oscillations and/or overshoots 
than the designed step response of TN.I, we would expect 

II TAUII« > II fKi II, 

and hence 

\\TN.,-fN.i\U>e,   e>0 

Since the peak gain also provides a loose lower bound for the Hx gain, it is likely that 

becomes large when the observed actual step response exhibits many more oscillations and/or 
overshoots than the desired one. This explains why, in the simulation, the models are updated 
whenever the filtered (noisy) actual step response exhibits unacceptable oscillations and/or 
overshoots. 

(ii) The algorithm used to obtain an estimate /=/,,• of /?,,,■ cannot be expected to give an 
optimal tfoo estimate. However, note that efficient algorithms for performing Hx system 
identification are still lacking and the corresponding theory is still not well understood.25-27 

(iii) Since the stability robustness of the closed-loop system for each \>., has to be checked 
by using step response testing, the method is not an on-line procedure. In fact, at this stage 
of development it is an off-line iterative identification and control design procedure. 

The simulation results are presented in Figures 6-8. We start with an initial model which 
has the transfer function 

n 0-8 
G0 = - 5+ 1-2 

In all these figures the graphs on the left show the noisy unit-step responses of the actual 
closed-loop systems and those on the right show the corresponding lowpass-filtered signals. 
Graphs (a) and (b) of Figure 6 show the responses of the actual closed-loop system with a 
nominal bandwidth of 0-1 rads"1. Note that overshoots and oscillations are absent for the 
response in graph (b). Graphs (c) and (d) of Figure 6 are for a nominal closed-loop bandwidth 
of 0-5 rads-1. Note that the response in graph (d) is oscillatory and any attempt to increase 
the nominal closed-loop bandwidth further is likely to lead to instability. At this stage it is 
necessary to improve the accuracy of the model if we wish to increase the nominal closed-loop 
bandwidth further. To ensure that the signals are sufficiently exciting, low-amplitude sinusoids 
in the relevant frequency range are superimposed on the unit-step input just prior to system 
identification. The responses are shown in graphs (a) and (b) of Figure 7. The updated model 
has a transfer function 

G - O-062528*2-0-339685+ 10-279 
1    s3 + 1-2801s2+ 9-1173s + 10-324 

The updated model G, is used to redesign a nominal closed-loop system with a bandwidth 
of 0-51 rads ' and the responses are shown in graphs (c) and (d) of Figure 7. By comparing 
graph (d) of Figure 7 with that of Figure 6, we observe that the response no longer has 
oscillations. We also notice that the rise time in graph (d) of Figure 7 is about twice that in 

^ 
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Figure 8. Simulation results 3 

graph (d) of Figure 6. Since both G0 and G, have the same relative degree n = 1, we would 
expect graph (d) of Figure 6 and graph (d) of Figure 7 to be similar to the unit-step response 
of the nominal closed-loop transfer function [0-5/(5 +0-5)]2. By comparing with the 
computed unit-step response of the transfer function [0-5/(5 + 0-5)] 2, we have verified that 
graph (d) of Figure 7 is very close to the desired one. If we continue to increase the nominal 
closed-loop bandwidth of the system, we obtain the responses shown in Figure 8, where graphs 
(a) and (b) are for a bandwidth of 1 rads"1 and graphs (c) and (d) are for a bandwidth of 
2rads    . 

The frequency responses of G, G0 and G, are presented in Figure 9. Notice that, compared 
with Go, the updated model G, has effectively captured the effects of the poorly damped 
resonance of the plant. 

For the purpose of comparison we present in Figures 10 and 11 the corresponding results 
obtained using the procedure described in Reference 10. Recall that, as we have mentioned in 
Section 1, these are obtained under noiseless conditions using rational function 
approximations (in the //„ sense) of the plant instead of identified models. It is also important 
to emphasize that, instead of strictly proper controllers, proper but non-strictly proper 
controllers are used in the procedure described in Reference 10. 

To facilitate comparison, we adopt the same initial model 

Gn = - 0-8 
5+1-2 

Graphs (a) and (b) of Figure 10 show the unit-step responses of the actual closed-loop system 
for nominal closed-loop bandwidths of 0-02 and 0-04 rads"1 respectively. Note that graph (b) 
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Figure 11. Simulation results using rational approximations of the plant 
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of Figure 10 shows significant oscillations. After the model is updated to 

-0-40945*+ 2-05725+ 7-175 
1    53+l-302752 +8-99085+10-6411 

using the procedure described in Reference 10, the unit-step response of the actual closed-loop 
system for a nominal closed-loop bandwidth of 0-04 rads-1 is improved and it is shown inH 
graph (c) of Figure 10. Graph (d) of Figure 10 shows the unit-step response when the nominalB 
closed-loop bandwidth is increased to 0-1 rad s"1. Graphs (a) and (b) of Figure 11 are obtained 
for nominal closed-loop band widths of 0-5 and 1 rads-1 respectively when the model is Gi.| 
If the model is improved to I 

G2 
-0-4061252 + 0-801965 + 6-3884 
5Z + 1 • 09775* + 8-8825 + 9-3027 

the unit-step response is given by graph (c) of Figure 11 for a nominal closed-loop bandwidth' 
of 1 rads-1. When the nominal closed-loop bandwidth is increased to 2 rads"1, the unit-step 
response is as shown in graph (d) of Figure 11. 
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All else being equal, we would expect the noiseless situations to give better results than the 
noisy conditions. However, by comparing the results given in Figures 6-8 with those given in j| 
Figures 10 and 11, we observed that, overall, the results given in Figures 6-8 appear to be j; 
better than those given in Figures 10 and 11. Therefore we can conclude that strictly proper 
controllers are less sensitive to high-frequency model uncertainties and hence require less 
frequent model updates when we attempt to increase the nominal closed-loop bandwidth of 
the system. This is important, because, as we have mentioned before, under noisy conditions 
the system identification process is becoming progressively difficult and it is advantageous to 
be able to have infrequent but accurate model updates. 

8. DISCUSSION AND CONCLUSIONS 

We have reviewed in Section 1 the strength and weakness of both the traditional adaptive 
control and the robust control design methods. These methods should be able to complement 
each other and there should be natural ways in which they could be blended harmoniously. j; 
We proposed that one of the possible ways is by the windsurfer approach which was first 
mentioned in Reference 13. We have shown, by simulation, that by starting with a (crude) initial ;; 
model of the plant and a (small-bandwidth) robustly stabilizing controller, the bandwidth of jj 
the closed-loop system can be increased progressively through an iterative control-relevant fl 
system identification and control design procedure. We shall highlight the following points ji 
which we believe are reasons for the success of the approach. j, 

(i) The use of control-relevant frequency weighting in the system identification criterion. 
(ii) Updating of the model when the effects of its error are no longer small in the closed- | 

loop response. This will ensure that model uncertainties are emphasized in the correct :| 
range of frequencies, 

(iii) The controller designed by using the IMC method always has integral action. Therefore 
it is insensitive to model uncertainties at low frequencies provided that the gain of the 
model at low frequencies is of the right sign, 

(iv) The use of strictly proper controllers to reduce the required number of model updates 
through identifying the RJti transfer function, a difficult task under noisy conditions, 

(iv) The controller designed by using the IMC method induces a natural factorization in the 
parametrization of the unknown transfer function of the plant. This enables the system 
identification problem to be solved efficiently. 

It is natural in any discussion of adaptive or iterative design to raise the question of 
convergence. We consider that the work of this paper implicitly established the following ,| 
practical convergence results, which are confirmed by all the simulations. >! 

1. Assume that a certain closed-loop bandwidth can be achieved for a known stable plant. i 
In the situation where the same plant is imperfectly known, it is possible to adapt the 
closed-loop system by the method described such that the same closed-loop bandwidth 
is achieved, assuming that the noise is not so great as to preclude satisfactory 
identification. 

2. For a specified (fixed) closed-loop bandwidth which is achievable with the real plant, the 
actual closed-loop behaviour approaches very closely the nominal closed-loop behaviour. 

In conclusion, we would like to emphasize that only the case of a stable plant with stable 
models is considered in this preliminary investigation. We hope to address the following 
problems in the near future. 

^S 
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(i) How to come up with an initial stabilizing controller. Simple cases where the plants 
have single or double poles at the origin have already been addressed, 

(ii) The extension of the method to deal with unstable plants or models, 
(iii) Use of orthogonalized exponential in the system identification procedure such that it 

becomes a convex optimization problem, 
(iv) To prove that the algorithm actually converges in some sense, 
(v) To study other control design methods in the context of the windsurfer philosophy. . 

APPENDIX I: PROOF OF THEOREM 2 

Since the controller 

Kj.,-%* (40) 

stabilizes the model 

G, = ^, NiXjj + D, Yj.i = 1 (41) 

then solving equations (40) and (41) simultaneously, we get 

XJJ= ^  (42) 
Di + NiKj.i 

Yj.,=    or    Yjj=l~NiXji (43) 

Substituting Xj,-, and Yj,i into 

will result in 

Solving for r,-,,-, we get 

r Ni + rj.iYj,, 
(-r'+i = T: T,— 

Di - rj.iXjj 

Gi + i = Gi + 
DiiPi-rjjXj.i) 

Df(Gi+l-Gi) 
'•'    1+DiXjAGi + i-Gi) 

From Figure 3 in Section 5, with n = 0, we can write for the closed-loop system 

GKj.i 1 -- Kj i Kj i 
y = — n + He, u = rt — He 

l + GKj.i        l + GKjj l + GKj.i        X + GKj.i 
Therefore we can write the equation 

ß = Diy-NiU 

as 

and the equation 

as 

DXJAG-G.)        D,{l + G,Kj,) 
l + GKj,i l+GKj,i 

a = Xj,iri 

DiU+GiKj.,) 
(46) 

Tt 
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If we form the output error defined by 

e-ß-rj,ia (47) 

then by substituting equations (44)-(46) into equation (47) and using the expression for XJ,I given by |j|| 
equation (42), we can obtain 

D,0+GlKj.l)KJAG-G,.t)     , D,{l + G,Kj.,)Hr (4g) .... 

(1 + GKj,i)(l + GuiKj.i) 1 + GKj,, 

Since equation (43) can also be written as 

it is clear that if we define the filtered output error as j, 

then 

» KJAG-GH)      —!—He 

(1 + GKj.Ml + Gi+lKj,i)        1 + GKjj 

or 

APPENDIX II: PROOF OF THEOREM 4 

Using the notations established in Section 6, we have 

R 
G~G> Q    _      *■*•'  

J''    l+QjAG-Gi)' ^•'    X + GiKj.i 

Therefore we can write 

I 
I 
I 
I 
I 
I 
I/_C^M Gl+iKjj   \        1 He 

\\ + GKj.i    1+GuiKj.iJ        \ + GKj,i 

I 
I 
I 
I 
I 
I 

! 

I 
I 
I 
! 

I 
I 

D 

^•'^TIT^^-00 (49) 
1 + OKjj 

We also have 

CI«=[GJ]«[GI1. 

where 

.„,      ncA- (Zi + s) n, (Zi - s) 
[G,]m= . lO,J, = »  

dGi nf (z, + s) 
Since Qj,i = [G.lm'F/.,-. we can rewrite the equation 

Kj-'"l-Qj.iG, 

as 

do,nF j(. .  

no, [TIi (z/* + s)dfj.l - n, (z, - s)nFjJ 
Hence we can write 

1 + C,,„.     *fa' + 'ffi'      , (50) 
n, (z * + s)dFj,, - n, (z, - s)nFj.t 

By substituting equation (50) into equation (49) and noting that 

w        ,*J.\    v*i ur*-    _dodKhi+ncnKLL dg^c-dcnc, 
dFji = (S+\j,i)       , 1+OAy,,- —— •-, O-O, - 

dcdKjj dodc 
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we obtain 

Rj,i = Rj.ißj.i 

where 

Rj.i= [Gi]m(s+^j.i)" 

is a known stable proper transfer function and, other than the factor s + X,., in the numerator. 

6       (s+ Xj.,)(rfc,nc- donoi) ,,jv 

dKj.,dc + nKj.,nc 

is an unknown stable strictly proper transfer function. 
To obtain the results on the order and relative degree of Rj.i we shall write 

lGj]m = — , tO,J»- 
T,(s) Pi(S) 

where each of the polynomials ij,(s), n{s) and Pi(s) has degree r./i + randm respectively. We can then 

obtain 

If we also write G as 

ß(5) 

where a(s) has degree p and ß(s) has degree q, then by substituting all these into equation (51), we get 

. (s + \j,i)[a(s)Ti(s)Pi(s)- vi(s)Pi(-s)ß(s)]  (52) 

Rj'' ~ ß(s)r,i{s)Us+\j.,)m+lpds)-\J.1lpd-S)] + \J3lCt{s)*,(s)pi{s) 

By counting the degrees of the resulting numerator and denominator polynomials of £,., given by 
equation (52), the required results are established immediately. □ 
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Unbiased least squares estimates in the presence 
of structure incompatibilities 

Henk Aling *and Robert L. Kosut n 

Abstract : When the system identification problem where 
is posed in a stochastic framework, model errors are 
defined as the sum of a bias and a variance term. The 
bias term is caused by incompatibilities between the 
model structure used with the identification and that 
of the true system. In particular, the use of ARX 
models almost invariably leads to bias since associated 
noise model has no zeros. Results are known on the 
unbiasedness of the first n Markov parameters of n-th 
order least squares ARX model estimates for systems 
that are excited by a white noise input. We will extend 
these results to the colored input case. 

Keywords: Least Squares, Markov Parameter, Sys- 
tem Identification, Model Reduction, Unbiased Esti- 

mation. 

A{z) = I + Y,A*s~i   '   BW =£>**'* 
t=i t=0 

Introduction 

Let us assume that we want to identify a model of the 
following linear, time-invariant discrete time system: 

yt = G(z)ut + H(z)et 

Here, yt and ut are the observed output and input 
sequences, and G and H are transfer functions in the 

shift operator z : 

G(z)    =    G0 + Gi2_1 + G2Z-1 + ■ ■ • 

H(z)    =    1 + HiZ'1 + H2z-2 + .. - 

G(z) and H(z) are general in the sense that we do not 
assume finite-dimensionality, or compatibility with an 
ARX model structure. We will use an n-th order ARX 
model to identify the system: 

yt + Aiyt-i +... + Anyt-n. = B0ut +... + Bnut~n + e« (1) 

This model structure is represented in terms of trans- 

fer functions as 

yt = A{z)-xB{z)ut + A(z)-Xet 

•Research Scientist, Integrated System» Inc., 3260 Jay 
Street, Santa Clara, CA 95054, USA. Phone: (408) 980 1500, 
Fax: (408) 980 0400, Email: alingCisi.com. 

«Manager Basic Research, Integrated Systems Inc., 3260 Jay 
Street, Santa Clara, CA 95054, USA. 

»This research was supported by the National Science Foun- 
dation under contract no. ISI-9161408 

Since the all-pole noise model structure A{z)~x is gen- 
erally incompatible with the noise system H(z) , any 
estimate G{z) = Ä{z)-xB{z) of G{z) will be biased. 
This bias can be reduced significantly by increasing 
n , thereby allowing more degrees of freedom to fit the 
noise model.  Thanks to the robustness properties of 
the least squares method this can oftentimes be done 
without severe errors due to overfitting.   However, if 
the excitation is poor, large errors in the frequency re- 
sponse of the model may still result in the poorly ex- 
cited regions. A better approach towards unbiased es- 
timation is given by the following known result, based 
on the impulse response of the estimated ARX model 

[4, 2, 5, 6]: 

Theorem 1 Let Ut and et both be independently, 
identically distributed sequences, and let u< and et 

be uncorrelated. Then, as the number of data points 
goes to infinity, the first n + 1 Markov parameters 
G0,..., G„ , obtained from the n-th order ARX model, 
are unbiased estimcit of the true Markov parameters 

Go,. • -,Gn . 

The surprising property expressed by this theorem is 
that the first n + 1 Markov parameters are estimated 
biasfree even in the case where the ARX model struc- 
ture is incompatible with that of the true system. This 
has been proved for the noisefree case [4, 2] as well as 
for the noisy case [5, 6]. We will extend this theorem 
to the case where ut is colored. The theorem is partic- 
ularly useful for reduction of high order ARX models 
based on the model impulse response [3, 7] . 

Definitions and normal equations 

We will derive a direct relationship between the 
Markov parameters of the true Bystem and the ARX 
model parameters, based on a straightforward evalua- 
tion of the normal equations. We define a parameter 
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matrix 0 and regression vector <f>t by 

0 = ( A    ß) = { Ai    ...   An    B0    . 

&=(-j/?li   •••   -yf-n   "?   •••   «?"-„) 

Hence, we can write (1) as 

Vt - 9<f>t + «t 

The least square solution is determined by the normal 
equations 

exxT = YXT (2) 

where Y and X are matrices containing the output 
and regression data: 

= ( yi yN j   i   -X" — y <f>i   ...   4>N ) 

To derive the relationship between the ARX model 
parameters and the true Markov parameters (Gt-, Hi) 
we have to introduce some more notation: 

) 

•"I 
t     =     ( uj    uj^    uj_2     ... J 

3    =    [ GQ    Gi    G2    .. 

h   =    ( J    Hi    E2    H3 

Et 

The input/outpuV^elationship can now be written as 

yt = gUt + hEt 

To put this in matrix form for all t — 1,... 
to add the definitions 

U = ( Ui    U2    U3    ...    UN) 

£ = I   Ei    E2    E3   ...    E/f J 

We can now write (3) for all t as 

(3) 

. N we have 

= (-)C) 
For the regression matrix X we can define 

/ 0    G0    Gi    ...    Gn-i    ... \ JO     Gi 

0    0       Go 

\ 0    0 

/0    / 

H    = 
0    0    7 

0       Go 

\o 

... \ 

■ / 

Figure 1: Impulse responses of ARX models, of order 
3,6,9,12: white input case. 

and express the matrix of regression vectors as 

X = 
-g   -U 

Here, I is an identity matrix extended with zeros to 
the right. The'normal equations are now written com- 
pactly as 

UUT    U£T 

SUT    ££T ■H1 
0      (4) 

Unbiased Markov parameter estimation 

The first main result is theorem 1 which been stated 
already. The proof is a straight consequence of the 
normal equations (4) and is given in the appendix. 

As an example, we have estimated models of orders 3, 
6, 9 and 12 on simulated data (generated by a single 
input/single output 4-th order system with white noise 
as input, and a signal to noise ratio of 1). Their im- 
pulse responses are shown in Figure 1; the solid line is 
the impulse response of the true model. The result is a 
good illustration of the theory: the impulse responses 
of all models are identical up to t = 3 , after which 
the third order response starts to differ from the rest - 
we see two separate lines. After t = 6 the sixth order 
response starts to differ so that we see 3 different lines, 
and so on. The fit of the first n+1 Markov parameters 
is based on asymptotic results and is therefore exact. 

A first extension to the non-white input case is given 
by the following corollary of theorem 1 . The idea is 
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Figure 2: 20-th order ARX model impulse response vs. 
true model based on prefiltered input. 

Figure 3: 20-th order ARX model impulse response vs. 
true model based on standard least squares. 

to describe the ut as the output of a filter with a white 
sequence wt as input, and use wt as input for the ARX 
model. The proof is given in the appendix. 

Corollary 2 Let V(z) be the spectral density function 
of ut and let it have the spectral factorization V(z) = 
W(z)VuuW(z-x)T [1] . Define wt = W^z)"1*, , and 
f (z) = A(z)~xB(z) as the n-th order least squares es- 
timate of an ARX model with input wt and output 

yt . Let G(z) = E,"o6i2_i be defined a5 ö(z) = 

f(z)W(z)_1 . Then, as the number of data points goes 
to infinity, GQ,...,Gn are unbiased estimates of the 
true Markov parameters GQ, ..., Gn . 

The corollary is illustrated by figure 2. The figure 
shows the comparison between the impulse response 
of a 20-th order ARX model (dashed line) estimated 
from data generated by a 4-th order model (solid line) 
observed in additive white noise (output error struc- 
ture, as opposed to ARX which is an equation error 
structure). The order r of the input filter with both 
poles and zeros was chosen to be 6, and the signal to 

noise ratio was equal to 1. 

This result is a straightforward consequence of theo- 
rem 1 and requires the availability of the signal uit . 
Due to the definition of G(z) , the plant model or- 
der will generally be higher than n , the order of the 
combined plant/filter system. It would be nice if we 
could relate the the Markov parameters of a n-th order 
ARX model with input ut directly to the true Markov 
parameters, as in theorem 1 . The following theorem 
proves that this is possible indeed, if the input is an 
auto regressive filtered white noise. The proof is given 

in the appendix. 

Theorem 3 Let ut be a quasi-stationary sequence 
with spectral density function V(z) of the form V(z) = 
W{z)^uuW(z-1)T , where Euu = Eju > 0 and where 

W(z) is an auto regressive finite-dimensional transfer 

function described by 

r 

W{z) = D{z)~l,   D{z) = I + J2D<2~i 

Let et be on independently, identically distributed se- 
quence uncorrelated with ut . Assume that r < 
n . Then, as the number of data points goes 
to infinity, the first n + l-r Markov parameters 
G0,---,Gn_r , obtained from the n-th order ARX 
model, are unbiased estimates of the true Markov pa- 

rameters Go,...,Gn_r . 

The theorem is illustrated by figure 3. The figure 
shows the comparison between the impulse response 
of a 20-th order ARX model (dashed line) estimated 
from data generated by a 4-th order model (solid line) 
observed in additive white noise. The order r of the 
autoregressive input filter was chosen to be 6, and the 
signal to noise ratio was equal to 1. Therefore, the im- 
pulse responses are identical up to the n+1 —r = 15 -th 
Markov parameter. 

Conclusions 

Despite the incompatibility of the ARX model struc- 
ture with that of the underlying system, it is possi- 
ble to use least squares to obtain unbiased model es- 
timates. This can be done in two ways which leads to 
either n+1 unbiased Markov parameters if a prefiltered 
white input is used, orn+l-r unbiased Markov pa- 
rameters in case the input is the output of an r-th or- 
der Auto Regressive filter driven by white noise. The 
results derived in this paper are based on an asymp- 

totic analysis. 
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Then, wc may postmultiply (9) by the (n + 1) x (n + 1 - r) 

block matrix 

DT   "•• 

D? 

This leads to 

(,   A) 
(  Ao 

Ao   i 

DJ ) 

I I 

V 

C? 

cj / 

= 0 

(10) 
Cr     =    0    . 
0  .    Since 

In  the  all-pole case,  we have  Ci   =  ... 

Then,  (10) leads to Ao   =  ...  =  A„_r 

G{z) = A(z)Eüu ■£>(*) . by straightforward multiplication 
of coefficients we obtain 

Gi = Gi   (i = 0,...,n-r) 

which proves the theorem. From (10) it is evident what 
the problems are when W(z) has zeros as well. Then, it is 
not straightforward how a similar result can be obtained. 
We leave that case as a direction for future research. 

[7] H.P. Zeiger and A.J. McEwen, Approximate linear 
realization of given dimension via Ho's algorithm, 
IEEE-AC, vol. 19, p. 153, 1974. 
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Appendix 

Proof of theorem 1 

According to our assumptions, we may set U£    and EU 
to «ero in expectation. The right block column of (4) then 

leads to 

/ gUUrIT   \ 

E{(l    A    -B  )   QUUT1T      } = 0 

\ IUUT1T ) 

By definition of Markov parameters we also have 

(5) 

Proof of theorem 3 

In case the input is colored, the expectation of the term 
UUT will not be a block diagonal matrix but a block 
ToepliU matrix. Assume that the input spectral density 
function is given by 

v(z) = ^v(z)Eu„^v(z)• , w(*) = J +j^w*""' 

where (W(z), E„«) represent the standard innovations rep- 
resentation of V(z) according to the spectral factorization 

theorem [l]. Then, (7) becomes 

( /    A    -B ) 

(  gUUTlT   \ 

QUUTIT 

/TTT 

:0 (6) 

\ IUUT1T ) 

Let us define the (», j)-th block element of UUT as 

t 

Note that this term depends onj'-t only, due to the sta- 
tionarity assumption. Subtracting (5) from (6), taking ex- 

pectations and introducing Gk for the difference Gk — Gj, , 

we get 

(' *) 

( Go ^n+l 

Gi 

/ Vo ..   vn   \ 

V_n ..    Vo 

V_n-1       • ..       V_l 

V 

(?) 

/ 

If ut is white noise, this implies that Vj, = NY.w&k ■ Sub- 
stituting that, it is easily seen that (7) leads to Gk = 0 
[k = 0,. .., n) which proves the theorem. 

Proof of corollary 2 

Let the joint plant/filter transfer function be defined as 
r(z) = G{z)W(z) , and let W(z) have no «eros on the 
complex unit circle. Thus, W(z) has a stable inverse and 
G(z) = r(z)W(z)-1 . Subtracting G{z) = t(z)W(z)~l 

from this, we get (G(z)-G(z))W{z) = t{z)-T(z) . Since 
by theorem 1 t; = T(t) (»' = 0,..., n) , the coefficients of 
z°,..., z~n of the Taylor series expansion of this term are 
zero. Thus, Gi = G; for t = 0,..., n . 

(,   A) 
( G0    ...    G„ <5»+i    ... \ 

Ö! ... 

f1 • .   wn W»+i .. \ 

-' I Wt 

I ■ ■ 

V '•• / 

diag(E„„). 

/ / 

WZ       ...    I 

"n+1 w? 

\ ■■ J 
or, defining A(z) = G{z)W(z)'£^ = £~0 A;z_i : 

^o     ...     An 

(,   A) 

(   I 

AR+i 

Al" 

\ 

Wn" 

Wj+l W? 

\   •■ 

= 0 

(8) 

(9) 

Now suppose W(z) = D(z)~1C(z) with 

D(z) = I + J2Diz~i   ,   C(z) = / + ^Ciz-' 
»=i 

S*7 
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A.4      On some key issues in the windsurfer approach to adaptive control 

W.S. Lee, B.D.O. Anderson, I.M.Y. Mareels, and R.L. Kosut, Automatica, Vol. 31, No. 11, pp.1619- 
1636, 1995. Appeared first in Proc. SYSID 94, 10th IFAC Symposium on System Identification, 
Copenhagen, Denmark, 4-6 July, 1994. 
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On Some Key Issues in the Windsurfer Approach to 
Adaptive Robust Control 

W. S. LEE,t B. D. O. ANDERSON,* I. M. Y. MAREELS§ and R. L. KOSUT1 

In the context of iterative identification and control, where the control 
objective is to maximize the bandwidth of the closed-loop system while 
achieving step tracking, we provide a methodology that achieves this goal 

for stable systems. 

Key Words—Adaptive control; robust control; internal model control; identification. 

Abstract—We examine a number of crucial questions that 
arise in the windsurfer approach to adaptive robust control. 
Considerations are limited to the case where the plant is 
stable and has no zeros on the imaginary axis. The key 
conclusion is that, given a strictly proper stable model of a 
strictly proper stable plant, we can improve the performance 
robustness of the closed-loop system through the windsurfer 
approach if the plant and the existing model have no 
unstable zeros within the designed closed-loop bandwidth 
and if the deterioration in performance robustness caused by 
increasing the closed-loop bandwidth results in a sufficiently 
high signal-to-noise ratio for a certain closed-loop output 
error. Situations that may cause the iterative identification 
and control design process to terminate prematurely are 
identified. A simulation example is used to illustrate the 
results discussed. 

1. INTRODUCTION 

1.1. Background and objectives 
A new adaptive control paradigm known as the 
windsurfer approach was first introduced in 
Anderson and Kosut (1991). The objective of 
this approach is to increase the bandwidth of a 
closed-loop system, if possible to a specified 
value   through   an   iterative   identification   and 
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control design procedure, given that the initial 
model of the plant may involve significant error 
in the high-frequency region. Furthermore, as 
the closed-loop bandwidth is being increased, the 
closed-loop frequency response is to be kept 
approximately flat in the passband so that the 
closed-loop transient response is not too 
oscillatory or having excessive peak overshoot. 

Iterative identification and control design is a 
topic of growing interest (see e.g. Anderson and 
Kosut, 1991; Zang et ai, 1991; Schrama, 1992; 
Schrama and Van den Hof, 1992; Lee et ai, 
1993; Partanen and Bitmead, 1993). Although 
these schemes are different in detail and have 
been proposed for achieving different control 
objectives, they have all originated from the 
awareness that, in any model-based control 
design task, the model serves no other purpose 
than that of designing a controller. It is therefore 
not surprising that the identification criterion 
adopted in each of these schemes is determined 
by the respective control performance criterion. 
Furthermore, the controllers employed in each 
of these schemes are designed on the basis of 
models (except possibly the first one) identified 
from data obtained under closed-loop condi- 
tions. An historical perspective on as well as a 
tutorial introduction to the joint design of 
identification and control may be found in 
Gevers (1993). 

A scheme for the windsurfer approach was 
presented in Lee et ai (1993). It was 
demonstrated by simulations that the bandwidth 
of a closed-loop system can be increased by the 
iterative applications of the internal model 
control (IMC) method (see Morari and Zafiriou, 
1989) and a closed-loop system identification 
procedure pioneered by Hansen (1989). 

1619 
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In this paper we examine a number of crucial 
questions that arise in this approach. When can 
one redesign the controller and expand the 
closed-loop bandwidth, without re-identifying; 
When should one re-identify? What does one 
want to identify in the re-identification process? 
What can one identify in the re-identification 
process? How can an identified model be 
verified against the desired purpose? Will 
re-identification always lead to improved closed- 
loop performance? Attention is restricted to 
strictly proper stable plants with no finite zeros 
on the imaginary axis. Extensions to more 
general situations are currently under investiga- 
tion (see Campi et al., 1994). 

1.2. Structure of the paper 
In Section 2 we describe the IMC design state 

of the windsurfer approach and show that it is 
safe to increase the designed closed-loop 
bandwidth gradually if the plant is stabilized by 
the existing controller. Section 2 also introduces 
some of the key concepts and notation used in 
the paper. Properties of good models for the 
windsurfer approach are established in Section 3. 
The control-relevant system identification 
method employed by the windsurfer approach is 
described in Section 4. Conditions necessary for 
identifying a good model and methods for 
verifying experimentally that an identified model 
is suitable for the desired purpose (or otherwise) 
will be given. In Section 5 we study mechanisms 
that may influence the iterative identification and 
control design of the windsurfer approach. 
Situations that may lead to the premature 
termination of the iterative process will be 
indicated. In Section 6 two methods for model 
validation are described. A procedure for the 
identification of a better model while avoiding 
the potential danger of causing instability in the 
actual closed-loop system will then be suggested. 
Conditions under which the performance robust- 
ness of a closed-loop system can be improved 
through the windsurfer approach are discussed 
in Section 7. A simulation example is presented 
in Section 8. We conclude the paper in Section 9. 

2. PRELIMINARIES 

In this section we describe a closed-loop 
system where, on the basis of a strictly proper 
stable model, a sequence of controllers is 
designed for a strictly proper stable plant. This 
description also introduces some of the key 
concepts and notation used in this paper. In 
particular, Section 2.1 outlines the IMC method 
in the manner that it is applied in the control 
design  step  of the  windsurfer approach. The 

concepts of nominal performance and robust 
stability are then introduced. In Section 2.2 it is 
shown that we can increase the designed 
closed-loop bandwidth of the system, while 
maintaining the stability of the actual closed- 
loop system, if the increment is sufficiently small. 
We conclude this section with a definition of 
performance robustness relevant to the windsur- 
fer approach. 

2.1. Controller design in the windsurfer approach 
The IMC method is applied in the control 

design step of the windsurfer approach where 
the reference input is a step function. Although 
the IMC method is generally applicable to the 
case where the plant and the models are not 
necessarily stable, we restrict ourselves to the 
case where the plant and the models are strictly 
proper and stable. In this situation the designed 
closed-loop bandwidth of the system is deter- 
mined by a single design parameter. 

Consider a closed-loop system as shown in Fig. 
1, where G is the transfer function of a strictly 
proper stable plant. A sequence of such models 
(identified from data obtained in closed-loop) 
eventuates in the windsurfer approach. We use 
G, to denote the /th member in the sequence of 
strictly proper stable models {G0, Gu G2, ■ ■ •}• 
On   the   basis   of   G,,   a   finite   sequence   of 
controllers   {K°, K) K?}  is   designed   such 
that, while keeping the closed-loop frequency 
responses approximately flat within the pass 
bands, the corresponding closed-loop band- 
widths form an increasing sequence 
{A?, A],..., A{}. Note that we shall in general 
use Kj to denote one of the controllers in the 
sequence {Kj, K),... , K{} when it is immaterial 
to the discussion which particular controller is 
involved. Figure 1 shows that 

Ki = 
Q, 

1 - GO,' (1) 

with Qj defined in the IMC method by 

Q, = [G.-K, (2) 

L 
H 

T-^Qr<y-~ Qi 

K, 

G,   » 

~o 

Fig. I. Internal model control structure. 
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where [G,]m is the minimum-phase factor of G„ 
and 

"■-( 
A, 

s + A, 
,    A,>0, (3) 

is a suitable IMC filter when the model is stable 
and when the reference input is a step function. 
The integer n of the IMC filter is chosen such 
that Q, is proper. The design parameter A, must 
be chosen such that the actual closed-loop 
transfer function 

X = 
1 + GK, 

(4) 

is stable. 
It can be shown that the designed closed-loop 

transfer function 

% 
_GIKL_ 

1 + G,Ki 

can be written as 

or 

T, = CiQ; 

% = /--[G,-]., 

(5) 

(6) 

where [G,]a is the all-pass factor associated with 
G, 

Remarks. 
• Since [G,]a(j&>) does not affect the magnitude 

of Ti()(o), it is clear that |7Xja>)| is flat in its 
passband and A, is the designed closed-loop 
bandwidth with an attenuation of -3n dB. 

• Note that the system becomes open-loop when 
A, approaches zero. Since G is stable, it is 
always possible to make 7J stable by choosing 
a sufficiently small A,. 

Although the designed closed-loop transfer 
function t, is always well behaved, the actual 
closed-loop transfer function 7] may become 
unstable when A, is too large. We introduce the 
following definitions. 

Definition 1. The designed closed-loop system 
involving Kt has robust stability if the stability of 
% implies the stability of T(. K, is said to 
robustly stabilize G,. 

Definition 2. For any two closed-loop systems 
designed   by   the   method   described   in   this 

subsection, we say that the one with a larger 
value of A, has a better nominal performance. 

2.2. Improving nominal performance while 
maintaining stability 

In Section 2.1 we have indicated that a 
closed-loop system may not have robust stability 
when A, becomes too large. Since the objective 
of the windsurfer approach is to increase the 
closed-loop bandwidth to a specificed value, the 
following question appears naturally: 

• When can the closed-loop bandwidth be 
increased with safety; that is, without losing 
robust stability, while retaining the use of the 
model G,? 

To answer the above question, we recall from 
Lee et al. (1993) that if 7] (corresponding to A,) is 
stable then there exists a strictly proper transfer 
function /?, such that 

G = Gt + 
/?, 

1 - Q,Rt 

It can then be shown that 

% = 0,(1 - ft)Rh (7) 

where 7]■. = T,\- % is the error in the closed-loop 
transfer function induced by the error in the 
model G, when the designed closed-loop 
bandwidth is A,. 

Suppose that the designed closed-loop band- 
width is increased to A/ > A,; then, corresponding 
to A/, we can write 

where 

/?; 

t; = ß/(i - 77)/?;, 

R, 
i + [G,]-

}
(F; - FJR,' 

Since Q[ and 77 are stable by design, ?,' and T\ 
are stable if and only if /?/ is stable. However, R\ 
is stable if A- - A, > 0 is sufficiently small. Hence 
we have the following conclusion. 

Conclusion 1. We can increase the designed 
closed-loop bandwidth cautiously if the existing 
closed-loop system has robust stability. 

Remark. Note that even when 7) is stable, its 
response to the reference input could be 
significantly different from that of fh if, relative 
to the frequencies where G, has significant 
errors, A, is not sufficiently small. To address this 
issue, we now introduce the concept of robust 
performance that is relevant to the windsurfer 
approach. 

Definition 3. With respect to the given reference 

iZ, 
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input r and a specified finite (usually suitably 
small) <7>0, the closed-loop system is said to 
have robust performance with designed closed- 
loop bandwidth A, if and only if 

J.-Wv.Wh a-, 

where v, = 7]r is the tracking error. 

Remarks. 

• Robust stability is necessary for robust 
performance, but it is not sufficient. 

• It is important to note that a closed-loop 
system may have high nominal performance 
(large A,) but poor robust performance 
(7, > a), and vice versa. 

• For a model with significant modelling errors 
in the high-frequency region, the closed-loop 
system can be designed to have good robust 
performance if the designed closed-loop 
bandwidth is sufficiently small. 

• While A, is being increased, a stage can be 
reached (before the occurrence of instability) 
where, because of the modelling errors 
associated with G, making a significant 
contribution to /,, the performance robustness 
has deteriorated beyond an acceptable level. 
At this stage the designed closed-loop 
bandwidth is A, = A{, and we decide to obtain a 
more accurate model G,+1 before continuing 
to open up the bandwidth. 

3. PROPERTIES OF GOOD MODELS 

In Section 2.2 we have concluded that when 
performance robustness of the closed-loop 
system has deteriorated beyond an acceptable 
level, it is necessary to identify a model better 
than the existing one before the designed 
closed-loop bandwidth can be increased further. 

It is clear from Section 2.2 that we can 
increase the designed closed-loop bandwidth as 
long as the closed-loop system has robust 
performance. Therefore it is natural that, when 
the closed-loop system looses robust perfor- 
mance, we attept to seek a new model that will 
allow robust performance of the closed-loop 
system to be restored through controller 
redesign (while the designed closed-loop band- 
width remains unchanged). This prompts us to 
ask the following question. 

• What would we like to identify, in order that, 
with the new model, robust performance of 
the closed-loop system can be improved 
through controller redesign? 

Before we proceed to answer the last question, 
we should observe that each stage of the 
windsurfer approach involves an existing model 

G, and an updated model G,+1. Since every stage 
of the iteration proceeds in a similar fashion, it 
suffices to discuss only the stage where / = 0. 
Therefore we shall denote the existing model by 
G0 and the updated model by G,. This system of 
notation will carry over to all transfer functions 
and signals involved in the following discussions. 

Suppose that Gx is identified when A0 has 
reached kfQ. A new controller t?\ will then be 
designed on the basis of Gx such that A? has the 
same value as \f0. Obviously, we should like 
yi = ||f?r|ii to be small. By using (l)-(5), 
with appropriate adjustments made to the 
notation, we can write t°=T°- f? as 

G-Gx fO 

r? = 
l + Gzßfo 

(i - f ?). (8) 

Clearly, it is necessary that T° be stable. Since 
G - G] is unknown, we conclude the following. 

Conclusion 2. We would like to identify G via a 
G, of sufficient accuracy such that the model G] 
satisfies the sufficient condition of robust stability 

G-G, 

G, 
f? <1. 

Furthermore, we observe that the magnitude of 
the designed sensitivity function 1 - r? in the 
right hand side of (8) could approach a 
magnitude significantly greater than one if G] 
has unstable zeros within the passband of 
f? = F?[G,]a. In order that f? have a small 
magnitude, we require in addition to the above 
robust stability condition the following. 

Conclusion 3. We would like to identify G via a 
G, of sufficient accuracy such that 

G(jw)-G,(jw) 

G,(jw) 
fX)*) 

is sufficiently small for all frequencies above the 
lesser of the passband of f° and the smallest 
critical frequency corresponding to the unstable 
zeros of T°h 

Remarks. 

• Observe that the unstable zeros of f? are 
those of G,, which, in a situation with good 
identification, will be those of the plant G 

• If G, has unstable zeros located within the 
passband of f", it is likely that there is a range 
of frequency within the passband of f? where 
the   magnitude   of   the   designed   sensitivity 

W 
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function  1 -' T°\  is significantly greater than 
one. This has the following consequences: 

(1) there is a range of frequency within the 
passband of f" where the designed system 
has poor disturbance rejection and the 
measurement noise is not well attenuated; 

(2) since the magnitude of the designed 
sensitivity function is the inverse of the 
distance of the open-loop frequency 
response curve from the critical point of 
stability at -1+jO, the designed system 
may have poor stability margins and 
transient response if the magnitude of the 
designed sensitivity function is excessively 
large near the edge of the system 
passband. 

For these reasons, we may not want to 
increase the designed closed-loop bandwidth 
A! beyond A{, if G[ is found to have unstable 
zeros with critical frequencies within the 
passband of ff

0. 

4. SYSTEM IDENTIFICATION IN THE 
WINDSURFER APPROACH 

Notwithstanding the fact that we have 
established in the last section properties of a 
good model for the windsurfer approach, it is 
important to ask the following question. 

• What can we identify by using the system 
identfication procedure embedded in the 
windsurfer approach? 

In this section we answer this question in three 
steps. In Section 4.1 we show that consideration 
of the control objective leads to a (closed-loop) 
control-relevant   system   identification   problem 
that   can   be   transformed   into   an   open-loop 
system identification problem. This transforma- 
tion is achieved by employing an identification 
framework pioneered by Hansen (1989), where, 
instead of the plant itself, a strictly proper stable 
transfer function (to be denoted by Rf

0) that 
parametrizes the plant is identified. In Section 
4.2 we shall show that it is possible to identify Rf

0 

accurately only if the signal-to-noise ratio of a 
certain closed-loop output error resulting from 
the existing controller is high. Furthermore, by 
recognizing   the   relation   between   the   signal 
component of the closed-loop output error and 
deterioration   in  robust  performance,  we  can 
restate the conditions necessary for obtaining an 
accurate estimate of /?{, in terms of the level of 
deterioration in robust performance against the 
effect of noise disturbance. In Section 4.3 we 
show how to verify indirectly that an estimate of 
Rf

Q is unbiased. 

4.1. Control-relevant system identification 
It was indicated at the end of Section 2.2 that 

when the designed closed-loop bandwidth has 
reached a certain value denoted by A{, the robust 
performance measure 

^=11^11 
associated with the closed-loop system designed 
on the basis of G0 would become excessively 
large. It was shown in Section 3 that at this stage, 
we like to identify a new model G, such that 

G}Qw) 

is sufficiently small in an appropriate frequency 
range. Unfortunately it is not clear how to 
process input-output measurements to deter- 
mine G} so that this condition is naturally or 
automatically satisfied. To overcome this 
difficulty, we use input-output measurements 
and possibly the reference input of the stable 
closed-loop system as shown in Fig. 2 to identify 
G, such that 

GKf
0 G,K{   \ f 

i + GKf
0  i + G,*:y ll2 

is minimized. This closed-loop identification 
problem can be transformed into an open-loop 
identification problem by employing Hansen's 
(1989) framework of identification. We state this 
result in the following theorem. It is a special 
case of Theorem 2 in Lee et al. (1993) when the 
plant G and the model G0 are stable. 

Theorem 1. Let Kf
0= (1 - G0Q

f
0y

xQl
0 stabilize 

G and G0, where Qf
0 is a proper stable transfer 

function, so that G can be parametrized by a 
strictly proper stable transfer function R& via 

G = G0 + 
\-RfoQfo' 

Let 

Gt = G0 + 
Ri 

1" RfoQfo 
(9) 

H 

r—o ")    Ki "4   . G 

d 

4 

Fig. 2. Closed-loop system just before identification. 

is 
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be another model stabilized by Kf
0, where fcfQ is a 

strictly proper stable estimate of R& Also define 

£1 = (1 - H)(ß - Ha), (10) 

where a = Qf
0r, ß = yf0 - G0u

f
0, and uf0 and yf

0 are 
respectively the input and output of the plant 
resulting from the application of K{. Then £, can 
be expressed as 

GK{ GM 

-(r 
where 

+ GK&    l + G,Kf
0 

wf0 = (l-T'0)He 

r + w J (11) 

(12) 

is the effect of the noise disturbance e on the 
actual closed-loop output. 

Remarks. 

• If we define H = (1 - R^Qiy1 Sf
0, where S{ is a 

proper stable and inversely stable transfer 
function, then the actual closed-loop system 
has Hansen's open-loop representation 

ß = Rf
0a + S{fi. (13) 

• From Theorem 1, it is clear that minimizing 

GKf
0 GM   \        f

2 

)r + w'0 
A + GK5   \ + G,K{) 

with respect to Gx is equivalent to minimizing 

11(1 - G0Q
f

0){ß - Rf
0a)||I 

with respect to Rf
0, provided that Gx is updated 

according to 

c    r ,     K 
G^Go + i-KQi- 

Note that the appropriate signal model (which 

r 
r 

Closed-loop system 

' • 

H Qi "o T/^^Vt 
V To 

' 
a IP 

1-Tf
0 

•Daigmed sciuidpitj function—— l-f{ 

' J_ 
L L 

„ä "B 

$=R{a+v£e 
Prediction error: 

;      7t{=BIF    ,       ^{ = CID 

has also taken the data filters L into 
consideration) for this system identification 
problem is 

ß = Riä + wy, 
where 

ä = L(l - fÖa, 

ß = L(l - fOP, 
1»6=L(l-f6)S6. 

• Since the 'input' a in (13) (and hence ä) is 
independent of the noise disturbance e, 
identifying Rf

0 and Sf
0 (or equivalently W{) is 

an open-loop identification problem. 

• We identify Rf
0 and W{, using a prediction error 

method (see Ljung, 1987) as shown in Fig. 3. 
Data filters L (typically low-pass) are usually 
employed to shape the bias-distribution of the 
estimates (which is due to under-modelling) 
such that the model error is small in the 
appropriate frequency range. 

We can summarise the above discussions as 
follows. 

Conclusion 4. We can transform the closed loop 
identification of G into an open-loop identifica- 
tion problem for 

G-G0 
Rfo- 

l + ßfi(C-Go)' 

4.2. Accurate identification of Rf
0 

In the following we show that the problem of 
identifying Rf

0 accurately can be solved 
effectively (using finitely many input-output 
measurements) if the signal-to-noise ratio of a 
certain closed-loop output error (to be defined 
immediately) is high. In particular, the normal- 
ized variance for an unbiased estimate of Rf

0 is 
small if the signal-to-noise ratio associated with 
the closed-loop output error is sufficiently high. 

From Fig. 4, we observe that the closed-loop 

Fig. 3. Identification of /?{, and w{ Fig. 4. Closed-loop output error. 

u 
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output error ijf0 is defined as £{, = yf0 - T&r. By 
substituting the expressions for a and ß into (10) 
and noting that 

«S = : 
Qi 

i(r-yro), 
1 - G0Q

f
0 

we can obtain 

fr0 = arg min || & - PQf
0(l - f£)r |||. (14) 

Now we can use the fact that yf
0 = Tf

ar + (1 
Tf

0)He to write 

where 

£fO = Vfo+Wf
0, 

W, = TV- 

(15) 

(16) 

Remark. Note that the tracking error vf0 cannot 
be measured directly. It can only be estimated 
from the closed-loop output error £{,. 

It is apparent that vf0 is the signal component 
in €f0 that carries the useful information about 
the existing modelling errors under closed-loop 
condition, and wf

0 is the noise component in £{ 
which obstructs the determination of Rf

0. 
Therefore we can draw an immediate conclusion. 

Conclusion 5. We can identify Rf
0 successfully if 

the signal-to-noise ratio associated with the 
closed-loop output error resulting from the 
existing controller Kf

Q is high. 

We next show that the normalized variance 
for an unbiased estimate of Rf

0 is small in the 
frequency range where the signal-to-noise ratio 
associated with the closed-loop output error is 
sufficiently high. 

By substituting (15) and (16) into (14) and 
noting from (7) that f {, = ßo(l - Tf

0)R
f

0, we can 
write 

£{, = arg min || Qf
0(l - ff

0)(R
f

0 - p)r + w{,\\2. 
p 

In practice, we use sampled input-output data to 
estimate a discrete-time model for kf

0 before 
converting it to a continuous-time transfer 
function. We assume that the errors involved in 
this conversion are negligible. Following Ljung 
(1987), we write the variance of an unbiased 
estimate of R{ approximately as 

E(|/HO) - Rfo(}co)\2) 

m 4>w'JL<>>) 
M|ßU;w)[i - ffo()oj)}\2 <*>,(«) 

where <£Hf,(«) is the power spectral density of 

wo, under the condition that the order of the 
discrete-time model for fcf0 (denoted by m) and 
the number of data (denoted by M) are large 
and the ratio m/M is small. Since 

*„'» = IÖ/oÜ^)[l - TföuyiRfäo)]2 *r(o>) 

is the power spectral density of UQ, we can write 
the normalized variance of Rf

0 as 

E 
H(]o>) - ^o(J^) 

Rl()o>) 

for the frequencies where Rf
0Qcj) ¥= 0. 

Remark. For a finite number of data, the 
normalized variance of Rf

0 can be small only in 
the frequency range where the signal-to-noise 
ratio associated with the closed-loop output 
error is sufficiently high. 

We now summarise the above discussion as 
follows. 

Conclusion 6. We can obtain an unbiased 
estimate of Rf

Q with a small normalized variance 
in a certain frequency range w15w<w2if 

(i) the model set used in the estimation of Rf
0 is 

sufficiently general; 

(ii) for   some    sufficiently   large    /A >0,   the 
following condition holds: 

> fj,   for o>i ^ o) ^ o)2. 

It is clear that nothing comes for free, and it is 
prudent to ask the following question. 

• What is the price that we have to pay, in terms 
of system performance, before a sufficiently 
high signal-to-noise ratio of the closed-loop 
output error can be achieved? 

We next show that it is necessary to have a 
certain level of deterioration in robust perfor- 
mance (relative to the effect of noise distur- 
bance) before the closed-loop output error can 
achieve a sufficiently high signal-to-noise ratio. 

By using (12) and (16), we deduce that 

if and only if 

>/x    for &>, <&)<ü)2,    wi^O, 

if 

\fiQw)\2 > M l[l - T'0(j<o)]H(ju>)\2 4>e(<o) 

for w,<w<w2 (17) 

47 
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where <t>,,(w) is the power spectral density of the 
noise disturbance e. Upon integration, we get 

-f ~\Tf
0(]a,)\2<t>r(w)dw 

K -L, 

By Parseval's theorem, and noting that w,>0, 
we can write 

Jf°=hl ifo(j«)i2^(W)dW) 

Jfo>-\ ~\T{,(j<ü)\2<l>,(a>)d(o. 

Therefore 

Jfo>~\ '\[l-Tf
0(]a>)]H(i<o)\2<l>e((o)da>. 

We can now restate the conditions necessary for 
the estimation of Rf

0 as follows. 

Conclusion 7. We can obtain an unbiased 
estimate of Rf

0 with a small asymptotic 
normalized variance in a certain frequency range 
of interest (w, < a» < a>2; W, > 0) if 

(i) the model set used in the estimate of Rf
0 is 

sufficiently general; 

(ii) there  is  robust  performance  deterioration 
bounded below by 

- f "|[1 - P0Qw)]H(jcü)\2^e(co)dw 
n Ja,, 

for a sufficiently large fi > 0. 

Remark. It is obvious that a problem is ill-posed 
if the value of a that specifies the tolerable level 
of deterioration in robust performance (see 
Definition 3) does not satisfy the inequality 

-\     |[1 - Ti(ja,)]HQo>)\2 <D,(a>) da, < - 

for a sufficiently large ^ > 0. 

4.3. Practically unbiased estimation of Rf
0 

In Section 4.2 we have shown that the 
normalized variance of Rf

0 can be small if the 
signal-to-noise ratio associated with the closed- 
loop output error is sufficiently high. However 
normalized variance can be used as a measure of 
the quality of an estimate only if the estimate is 
unbiased. It is therefore necessary to verify that 

Rfo is a practically unbiased estimate (or an 
unfalsified model as discussed in Ljung et al, 
1991) of Rfo. In this subsection we show how to 
infer that Rf

0 is a practically unbiased estimate of 
Rf

0 by verifying that (1 + dK&y^K'o is a 
practically      unbiased      estimate      of     (1 + 

We begin by considering 

Mr GK{ GM 
r + - 

1 
He. 

+ GKf
0    1 + G.AV      l + GKf

0 

Clearly, if (1 + G^-'G,/^ is a practically 
unbiased estimate of (1 + GKf

0)~
lGKf

0 then the 
power spectral density of £, should reflect the 
effects of the noise disturbance only. We can 
perform this verification experimentally after G, 
is obtained (as we describe in Section 6). Now 
recall that, if it is necessary to update the model 
Gn, the magnitude of 

GK'0 G0K
f

0 

1 + GKf
0    1 + G0K

f
0 

Qf
0(l - %)Rf0 

must be significant in a certain frequency range 
[cou to2]. Therefore, before the model G0 is 
updated, both the magnitude of the frequency 
weighting Qf

0(l - f{) and the magnitude of R{ 
cannot be small in [<o}, w2]. Since we can write 

GKQ G\ K() r - r r 

YVc^rvTG^rm-To)(R°-Ro)- 
it can easily be deduced that if (1 + 
GtKby^G'K'o is a practically unbiased estimate 
of (l + GKiy'GKi in [w„a>2] then Rf

0 is a 
practically unbiased estimate of Rf

0 in [W,,üJ2]- 

We can therefore conclude the following. 

Conclusion 8. We can verify that fc{ is a 
practically unbiased estimate of Rr

0 in [OJU w2\ by 
verifying experimentally that (1 + G,K£)-1G,/C& 
is a practically unbiased estimate of (1 + 
GKiy'GK^ in [o»,,w2]. 

5. MECHANISMS THAT INFLUENCE 
PERFORMANCE ROBUSTNESS AND 

IDENTIFICATION 

In this section we study mechanisms that 
influence performance robustness of systems 
designed by the IMC method. We show that 
there are three mechanisms that may lead to 
deterioration in robust performance. However, 
only one of them contributes to the high 
signal-to-noise ratio needed for a successful 
estimation of /?{,. These observations allow us to 
deduce situations where the iterative identifica- 
tion and control design process may continue or 
may terminate prematurely. 

18 
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Recall that in Section 4.2 we have shown that 
a certain level of deterioration in robust 
performance is necessary before we can attempt 
to find a good estimate of Rr

0. However, we 
should ask the following question. 

• Does it mean that, irrespective of the causes, 
deterioration in robust performance is always 
helpful to the identification of /?£? 

The answer is obviously no. 
With appropriate substitutions in (16) and (12) 

respectively, we can obtain 

v'o- 

wf
0- 

G-G0 

G0 
n 

i + 
G-G0 

G0 

■(i-ny, (18) 

n 

i+- 
Go 

G0ff 1 o 

(1 - U)He.        (19) 

Since Jf
0= ||vS|||, we observe that, disregarding 

changes in disturbance suppression ability, 
deterioration in robust performances is governed 
by the value of 

jfo = YK[f
v{kü))äl 

We therefore conclude from the right-hand side 
of (18) that for a given reference input, there are 
three   factors   that   contribute   to  Jf

0   through 

1. The effect of the term [(G - G0)IGo]f{ in the 
numerator is independent of the phase angle 
of [(G -G0)/Go]ff0. We call this the phase- 
insensitive factor. 

2. The effect of the term 1 + [(G - G0)/G0]ff0 in 
the denominator depends on the gain and 
phase margins of [(G - G0)/G0]Tf

0. We call 
this the stability margin factor. 

3. The effect of the term 1 - ff
0 depends on the 

existence of unstable zeros of G0 within the 
passband of Tf

0 = Ff
0[G0]a. We call this the 

unstable-zeros-dependent factor. 

By using (18) and (19), we can write the 
signal-to-noise ratio associated with the closed- 
loop output error as 

GO)- 
GQQCU) 

G0(jo>) rfr   \ 2 

<*>,(*>) 
\H(]co)\2 *,(") 

This equation indicates that for a given reference 
input and noise disturbance scenario, only an 
increase    in    the    magnitude    of   the    phase 

insensitive factor can increase the signal-to-noise 
ratio of the closed-loop output error. We now 
summarise the above discussions as follows. 

Conclusion 9. 

1. There are three factors that can cause the 
performance robustness to deteriorate: the 
phase-insensitive factor, the stability margin 
factor and the unstable-zeros-dependent fac- 
tor. Among these, only the phase-insensitive 
factor can contribute to improving the 
signal-to-noise ratio associated with the 
closed-loop output error. 

2. When the unstable-zeros-dependent factor or 
the stability margin factor are the main causes 
of deterioration in robust performance, the 
signal-to-noise ratio associated with the 
closed-loop output error may be poor, and it 
may be difficult to obtain a practically 
unbiased estimate of R{ with a small 
asymptotic normalized variance. This may 
cause subsequent difficulties in continuing the 
iterative identfication and control design 
process. 

Remarks. 

• From (18), it is clear that *„{,(w) cannot be 
large in the frequency range where the 
designed sensitivity function has small mag- 
nitude. This implies that the frequency range 
[w,,«2] emphasized in Section 4 cannot be 
well below Xf0. 

• From the definitions of the phase-insensitive 
factor and the stability margin factor, we can 
deduce that it is possible to estimate Rf

0 

accurately only in the frequency range where 
the designed complementary-sensitivity func- 
tion weighted multiplicative modelling error 
has large magnitude and small phase lag. This 
implies that the frequency range [OJ1,O>2] 

cannot be well above A{, (where Tf
0 has small 

magnitude and large phase lag). 

• When the stability margin factor or the 
unstable-zeros-dependent factor are the main 
causes of deterioration in robust performance, 
it may be difficult to obtain an accurate 
estimate of Rf

0. This may lead to premature 
termination of the iterative identification and 
control design process. In particular, when the 
existing model G0 has unstable zeros within 
the passband of the designed closed-loop 
transfer function Tf

0, the designed sensitivity 
(unstable-zeros-dependent factor) may have 
large magnitude in a certain frequency region. 
This fundamental limit in control performance 
(discussed in Freudenberg and Looze, 1985) 
causes a deterioration in designed and robust 

4? 



1628 W. S. Lee et al. 

performances with no improvement in the 
signal-to-noise ratio associated with the 
closed-loop output error. 

6. IDENTIFICATION AND VALIDATION OF NEW 
MODELS 

In Section 4.2 we have shown that under noisy 
conditions, the accuracy of the identified model 
can be improved by increasing the signal-to- 
noise ratio associated with the closed-loop 
output error. It was also shown that this is 
equivalent to having a certain level of deteriora- 
tion in robust performance relative to the effect 
of noise disturbance. It is clearly undesirable 
from the control point of view for robust 
performance to deteriorate too seriously, while 
on the other hand it is necessary to have a 
sufficiently high signal-to-noise ratio in the 
closed-loop output error before identification 
can successfully be carried out. Furthermore, it is 
important to ensure that a model with the right 
properties is identified. We should therefore like 
to ask the following practical questions. 

1. When  should  we  try  to  identify  a  better 
model? 

2. Have we actually identified a good model for 
our purpose? 

Before we can answer these questions, we 
need methods for validating an identified model. 
In Section 6.1 we describe a frequency-domain 
method for model validation. In Section 6.2 we 
give a time-domain method for model validation. 
In Section 6.3 we draw on the results of Lee et 
al. (1994), which compared the two methods of 
model validation and suggest a procedure for 
identifying a better model. 

6.1. A frequency-domain method for model 
validation 

In the following we present a model validation 
method in the frequency domain. It should be 
emphasized that the model validation procedure 
is designed with the closed-loop control objective 
in mind. 

Recall that, given the existing model G0, it is 
necessary to identify an improved model G, 
when Jf

0= ||uoil2 is excessively large. Evidently 
£{ could be large (implying undesirable 
performance) with one or both of v^ and w^ 
large. If the former is larger, there is a potential 
to reduce it by improved model identification. 
But this only works (in a particular frequency 
band [w,,w2D if the signal-to-noise ratio is 
sufficiently high. Specifically, when only finitely 

many input-output measurements are available 
for identifying Rf

0 (which parametrizes G), it was 
shown in Section 4.2 that the normalized 
variance of Rf

0 is small only if the signal-to-noise 
ratio *„/(«)/<!>„,/(«>) associated with €f0 = vf0 + 
wf

0 is sufficiently high. Obviously, then one 
needs to estimate power spectra for wQ and v0 

(or more precisely £0). We now proceed as 
follows. 

From v0 = (T0- %)r and £0 = i>o + Wo, we 
observe that when r = 0, the sole contributor to 
f0 is w0. Therefore we can compute $>„a(to) after 
measuring £0 with r = 0. When r^O, we have 
£o= Wo + w0- Assuming that vQ and w0 are 
uncorrelated (which follows if r and e are 
uncorrelated—a typical situation), <J>fti(w) = 
$>Vo((o) + 4>W(1(a>). By visual comparison of 
4>f()(w) with $>W()((o), we evaluate the significance 
of <!>„„(o>) with respect to OJw). If ^f,(w) is 
significantly larger than <£>w>0(<o) in a frequency 
band spanning one decade and centred around 
Xf0 (when the designed closed-loop bandwidth is 
A{,), the model G0 is invalidated for the design of 
closed-loop systems with bandwidths larger than 
or equal to \f0. 

The method just described can also be used to 
validate G, after it has been identified (both 
before and after model reduction is performed). 
We simply replace G0 by G,, while retaining Kf

0, 
in the simulation of the designed closed-loop 
response to the reference input. This allows us to 
compute £, and its power spectrum ^(w)- By 
visually comparing <&£,(w) with <£„/(«), we have 
good confidence that G, is a reliable model of G 
(when the designed closed-loop bandwidth is A£) 

if 4>fl(w) is comparable to $*,{;(«) up to A{. 

6.2. A time-domain method for model validation 
We now describe a time-domain model 

validation method. This is useful both for 
establishing that G0 should be rejected (that is, 
as a flag for re-identification) as well as for 
validating a new model, G,, replacing G0. 

Referring to Fig. 3 and (10), we notice that 
eß = L£, when ^ = 1, where eß is the prediction 
error (also known as the residual). We also 
observe from (9) that G, = G0 when Rf

0 = 0, and 
from (11) that £, = £f0 when G, = G0. Therefore 
we have eß = Lf £ when ♦£ = 1 and Rf

Q = 0. This 
suggests that G0 should be rejected if the 
cross-correlation of the prediction error eß with 
the future values of 'input' ä exceed its (3<r) 
confidence limits when »P{, = 1 and &f

0 = 0. This 
reasoning is independent of the true "/£. See 
Ljung (1987) for more details of model 
validation by correlation techniques. (Actually it 
is also easy to apply the same method to 
validate a pair of newly identified #{, and M) 

?0 
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before kr
0 is used to calculate G,. We simply 

check that the correlation of eß with the future 
values of ä are within their respective confidence 
intervals.) 

6.3. Identification of a better model 
The methods of model validation described in 

Sections 6.1 and 6.2 were compared critically in 
Lee et al. (1994). The key conclusions of that 
study are summarized in the following. 

• Correlation function estimates and power 
spectrum estimates are both useful for model 
validation where the goodness of fit is based 
on a closed-loop control criterion. 

• Correlation function estimates are more 
sensitive than power spectrum estimates in the 
sense that the former tend to invalidate a 
model before identifying a better model is 
necessary and possible. This does not imply 
that the correlation method is useless. On the 
contrary, it suggests that the correlation 
method is useful for detecting incipient 
modelling errors. 

• Power spectrum estimates not only suggest 
when a model becomes inadequate, but they 
also indicate the frequency range in which the 
signal-to-noise ratio is high for identification. 

• There is a limit on the achievable accuracy for 
performing identification on closed-loop sys- 
tems if existing controllers are designed on the 
basis of models with unstable zeros. (Recall 
the effect of the unstable-zeros-dependent 
factor remarked upon at the end of Section 5.) 
Therefore prior knowledge of unstable zeros 
in the existing model (say G0) is important. 
Specifically, let wz be the minimum critical 
frequency corresponding to the unstable zeros 
of G0; simulation experience confirmed that it 
is very difficult, if not impossible, to identify a 
model better than G0 if A{,> \OJZ. It should be 
remarked that this is reminiscent of design 
tradeoffs discussed in Freudenberg and Looze 
(1985), as opposed to an ill-posed problem. 

• In general, we update G0 if 
(i) both methods of model validation suggest 

so; and 
(ii) \f

Q<
]2Cüz. 

We now suggest a procedure for identifying a 
better model. Notice that in the frequency range 
where the current model G0 has significant 
modelling errors, the signal-to-noise ratio of the 
closed-loop output error can be increased by 
increasing the magnitude of the reference input 
or by increasing the designed closed-loop 
bandwidth. If practical operation constraints do 
not allow the magnitude of the reference input 

to be increased then the signal-to-noise ratio of 
the closed-loop output error can only be 
increased by increasing the designed closed-loop 
bandwidth. This, however, has the potential 
danger of causing instability in the actual 
closed-loop system if the designed closed-loop 
bandwidth is increased excessively. To avoid this 
danger, we proceed as follows. 

1. Reduce the rate of increasing the designed 
closed-loop bandwidth A0 once the correlation 
method for model validation has invalidated 
G0. 

2. Attempt to identify Rf
0 (when A0 = Xf

Q) as soon 
as the power spectrum method for model 
validation suggests that £o has a sufficiently 
high signal-to-noise ratio, provided that 
A{,<3WZ. 

(a) Use the collected data to identify a set of 
models by experimenting with the likely 
model structures. Perform model verifi- 
cation on each of these models. 

(b) If an identified model is found to be 
sufficiently accurate, accept it for the next 
stage of control design. Otherwise, 
increase the designed closed-loop band- 
width slightly, collect a new set of 
measurements and repeat the procedures 
of model estimation and verification. 

(c) Repeat the last two steps until a 
sufficiently accurate model is obtained 
and verified. 

3. Terminate the iterative identification and 
control design procedure if X-o — ^z and £o> 
although unacceptably large, does not facilit- 
ate the identfication of a better model. 

7. ROBUST PERFORMANCE IMPROVEMENT 

Now we know what can be identified and how 
an identified model can be validated. We have 
also indicated in Section 3 what we would like to 
identify. It is therefore logical to ask the 
following question. 

• How does the object which we can identify 
relate to the object which we would like to 
identify? 

The answer is that the objects are virtually the 
same, although it is not obvious. What we can 
identify is couched in terms of i?{, and what we 
would like to identify is couched in terms of Gx. 
We need to connect these characterizations. In 
this section we show that, provided that certain 
conditions are satisfied, the controller designed 
on the basis of the model G, updated through an 
estimate of Rf

0 can improve the performance 
robustness of the system. 

Recall from (17) thai, just before we attempt 
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to update the model G0 through identifying Rf
0, it 

is necessary that 

|f£(j<o)|2*» 

>fi\[l- H(jo>)]//(j«)|2 *,(«)   for w, < <u < <o2 

for a sufficiently large /JL > 0. Furthermore, it is 
also necessary that |f{,(jw)| in the above 
inequality be mainly contributed by the phase- 
insensitive factor before an accurate estimate of 
Rf

0 can be obtained. This implies that in order to 
improve the robust performance through iden- 
tification and redesign, it is necessary that the 
phase-insensitive factor (which is also the 
complementary sensitivity weighted multiplica- 
tive factor (which is also the complementary 
sensitivity weighted multiplicative modelling 
error) associated with the updated model Gx and 
the redesigned controller K° (while keeping 
A? = A£) be small in the frequency range 
[w1,w2]- Hence it is relevant to consider the 
magnitude of the ratio 

G-G, «JA2^«) 
in the frequency range [o)u w2\ 

Before the main results are presented in 
Theorems 3 and 4, we state a theorem (which 
follows directly from Theorem 4 of Lee et al., 
1993) that is relevant to the choice of the 
relative degree of Rf

0, and establish two lemmas 
that we use in the proof of Theorem 3. 

Theorem 2. Let the controller Kf
0 and the proper 

stable transfer function Qo designed by the IMC 
method described in Section 2.1. Then the 
relative degree of 

R'a- 
G-GQ 

0    l + ßS(G-Go) 

is given by 

rel deg {RQ = min (rel deg {G}, rel deg {G0}). 

Remark. The relative degree of the strictly 
proper plant G is usually unknown. It is 
therefore necessary to allow, in the identification 
of /?{,, the relative degree of Rf

0 to take the 
smallest possible value of one. 

Lemma 1. Suppose that G0 has a relative degree 
of n > 1, Qf

0 = [Golm'Fo is proper, and R{, has a 
relative degree of <?>1. If G, is updated 
according to 

G„ + Ri 

then 

(i) Gi has a relative degree k, where 

k = min (n, q)   otherwise; 

(ii) there exists a strictly proper IMC filter 

F° = Ff
0(      °'   j ,    i is an integer 

(where Ff
0 has a relative degree such that 

Qfo = [Go]™Ff
0 is proper) such that Q? = 

[Gijm'F? has at least the relative degree 
of Qk 

(iii) if G) has no zeros along the imaginary axis 
then Q°/Qo is bounded along the imaginary 
axis; in particular, there exists a finite 5 such 
that 

sup ß?Ü*>) 
Q%o>) 

= 8. 

Proof, (i)  There  are  three  cases  to  be  con- 
sidered, namely q = n, q <n and q >n. 

For the case where q - n, consider 

lim sqGi = lim s"G0 + lim 
l+qfoRfo' 

Since 

and 

we have 

or 

lims"G0 = c1,    c,#0, 

sqRf 

lim T7X7 = c2,   c2 ^ 0, 
— 1 + Qf0Rf0 

\imsqGi=0   if c2=-c,, 

lim^G.^O    ifc2^-c, 

Hence the relative degree of G, is k > q = n. 
Next consider 

sqkf 

lim 5"G, = lim sqG0 + lim ^7 
s^l + QiRi S—--X. S—>* 

1 - QfM 

for q < n. Clearly, 

limj«G1 = Hrns'?/H^0, 

^ 
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since Qf
0 is proper and G0 has a relative degree 

larger than q. Therefore the relative degree of 
G, is k = q < n. 

Similar considerations applying to 

lim s"Gx = lim s"G0 + lim °ß, 
S—»°e 5—»» j—»ac 1  +   \JQKQ 

for g > n will lead to the conclusion that the 
relative degree of Gx is k = n<q. 

(ii) It follows immediately from the above 
that Q° = [G,]"^? has at least the relative 
degree of Qf

0 = [G0]-'Ff
0 if 

Obviously, since k > 1 and the relative degree of 
F{, is at least «, F1? is strictly proper. 

(iii) Now it is easy to conclude that for the 
above choice of F°, Q°/Qo is proper. Therefore 
if G, has no zeros along the imaginary axis and 
G0 has no poles along the imaginary axis then 
QVQo is bounded along the imaginary axis and 
there exists a finite 8 such that 

sup ß?(j«) 
QfQco) 

D 

Remarks. 

It will be clear from Theorem 3 that it is 
undesirable for 8 to become excessively large. 

Since all poles of G0 that are also poles of G 
are always retained by a well-identified Gx, it 
is clear that poles of G0 that are also poles of 
G, even if they are near the imaginary axis, 
will not cause 8 to assume an excessively large 
value. 

Zeros of G, near the imaginary axis for 
wx < CD < «2 may not appear as zeros of G0. 
However, these zeros would be zeros of the 
plant G if G, is a well-identified model of G 
for cü, < w < (o2. This would happen only if we 
increased the closed-loop bandwidth to the 
frequency range where the plant has (stable 
or unstable) zeros near the imaginary axis, and 
the controller has excessively large gain. 
Therefore we can prevent 8 from being 
excessively large by observing well-known 
design guidelines. 

If G0 has poles near to the imaginary axis for 
to, < o) < oo2 that are not poles of the plant G 
then a well-identified model Gx for G either 
will have no poles at these locations or will 
have approximate pole zero cancellations at 
these locations. In these situations 5 may 
become excessively large. It is therefore 
important to verify that an identified model 

(such as Gn) has no unnecessary poles near the 
imaginary axis. 

Lemma 2. If G0 and Gx are strictly proper stable 
models of the plant G, and ff

0 = G0Q{, is the 
closed-loop transfer function, where Qf

0 is 
designed by the IMC method, then there exists a 
finite 7} such that 

sup 
G,(jw)-G<>(joj) 

G0(jw) 
Ttijw) 

Proof. Clearly the transfer function G, - G0 is 
stable. Also, from the facts that ff

0 = G0ßo and 
that the Q{ designed by the IMC method is 
proper and stable, it is easy to conclude that 

G\ - G0 

Go 
% = {Gx-G0)Q

f
0 

is proper and stable. 

Remarks. 

D 

• It will be clear from Theorem 3 that it is 
undesirable for TJ to become excessively large. 

• TJ may become excessively large if G} has poles 
near the imaginary axis for w, < w < w2 that 
are not poles of G0, and if A£ is very near to 
the critical frequencies of these poles. 
However, this is impossible because if Gx were 
a well-identified model of the plant G then G 
would have poles near to ±jA{ that are not 
poles of G0. Under these conditions, the actual 
closed-loop system Tf

0 would be unstable or 
almost unstable. Furthermore, A£ cannot be 
close to the zeros of G0 near the imaginary 
axis for w, < w < w2, because this will result in 
a controller with an excessively large gain in 
that frequency range. Hence, by ensuring that 
the actual closed-loop system Tf

0 is far from 
instability (recall the guidelines given at the 
end of Section 6.3) and by observing 
well-known controller design guidelines, we 
automatically prevent T) from taking exces- 
sively large values. 

Theorem 3. Let G0 be a stable strictly proper 
model of the plant G Suppose that G is 
stabilized by the controller K{, designed accord- 
ing to the IMC method described in Section 2.1, 
and hence has the description 

G = G0 + 
Rfo 

where 

Qi=[G»)-m]n, 

(20) 

(21) 

with [Go],,, the minimum-phase factor of G0. Let 
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1. When can one redesign the controller and 
expand the closed-loop bandwidth, without 
re-identifying? 

2. When should one re-identify? 

3. What does one want to identify in the 
re-identification procedure? 

4. What can one identify in the re-identification 
procedure? 

In order to check if an identified model is 
actually good for our purpose, we have 
presented two methods for validating an 
identified model experimentally before it is 
employed in controller redesign. 

The main conclusion of this paper is that, 
given a strictly proper stable model of a strictly 
proper stable plant, it is possible to improve the 
robust performance of a closed-loop system 
through the windsurfer approach if 

(i) the deterioration in performance robustness 
caused by increasing the closed-loop band- 
width is mainly contributed by the phase- 
insensitive factor; 

(ii) the deterioration in performance robustness 
caused by increasing the closed-loop band- 
width resulted in a sufficiently high signal- 
to-noise ratio associated with the closed- 
loop output error; 

(iii) the designed closed-loop bandwidth has not 
approached the minimum critical frequency 
corresponding to the unstable zeros of the 
plant or the existing model. 

Acknowledgements—The authors wish to acknowledge the 
funding of the activities of the Co-operative Research Centre 
for Robust and Adaptive Systems by the Australian 
Government under the Cooperative Research Centres 
Program. R. L. Kosut wishes to acknowledge support by 
AFOSR,    Directorate    of   Mathematical    and    Computer 

Sciences,   Under  Contract   F49620-93-C-0012.   W.  S.   Lee 
wishes to thank Dr Robert R. Bitmead for valuable advice. 

REFERENCES 

Anderson, B. D. O. and R. L. Kosut (1991). Adaptive robust 
control: on-line learning. In Proc. 30th IEEE Conf. on 
Decision and Control, Brighton, UK, pp. 297-298. 

Campi, M., W. S. Lee and B. D. O. Anderson (1994). New 
filters for internal model control design. Int. J. Robust and 
Nonlinear Control, 4, 757-775. 

Freudenberg, J. S. and D. P. Looze (1985). Right half plane 
poles and zeros and design tradeoffs in feedback systems. 
IEEE Trans. Autom. Control, AC-30, 555-565. 

Gevers, M. (1993). Towards a joint design of identification 
and control? In H. L. Trentelman and J. C. Willems, (Eds) 
Essays on Control: Perspectives in the Theory and its 
Applications, pp. 111-151. Birkhäuser. Boston. 

Hansen, F. R. (1989). A fractional representation approach 
to closed-loop system identification and experiment design. 
PhD dissertation, Stanford University. 

Lee, W. S., B. D. O. Anderson, R. L. Kosut and I. M. Y. 
Mareels (1993). A new approach to adaptive robust 
control. Int. J. Adaptive Control and Signal Processing, 7, 
183-211. 

Lee, W. S., B. D. O. Anderson, I. M. Y. Mareels and R. L. 
Kosut (1994). On some practical issues in system 
identification for the windsurfer approach to adaptive 
robust control. In Proc. \0th IFAC Symp. on System 
Identification. 

Ljung, L. (1987). System Identification: Theory for the User. 
Prentice-Hall, Englewood Cliffs, NJ. 

Ljung, L., B. Wahlberg and H. Hjalmarsson (1991). Model 
quality: the roles of prior knowledge and data information. 
In Proc. 30th IEEE Conf. on Decision and Control, 
Brighton, UK, pp. 273-278. 

Morari, M. and E. Zafiriou (1989). Robust Process Control. 
Prentice-Hall, Englewood Cliffs, NJ. 

Partanen, A. G. and R. R. Bitmead (1993). Two stage 
iterative identification/control design and direct ex- 
perimental controller refinement. In Proc. 32nd IEEE 
Conf. on Decision and Control, San Antonio, TX, pp. 
2833-2838. 

Schrama, R. J. P. (1992). Accurate identification for control: 
The necessity of an iterative scheme. IEEE Trans. Autom. 
Control, AC-37, 991-994. 

Schrama, R. J. P. and P. M. J. Van den Hof (1992). An 
iterative scheme for identification and control design based 
on coprime factorizations. In Proc. American Control 
Conf, pp. 2842-2846. 

Zang, Z., R. R. Bitmead and M. Gevers (1991). Iterative 
model refinement and control robustness enhancement. In 
Proc. 30th IEEE Conf. on Decision and Control, Brighton, 
UK, pp. 279-284. 

7V 



A.5      A family of norms for system identification problems 

M. Massoumnia and R.L. Kosut, IEEE Trans, on Automatic Control, vol. 39, no. 5, May 1994, 
pp.1027-1031. Appeared first in Proc. 1993 ACC, San Francisco, CA, June 1993. 

I 
I 
I 

75 



76 



IEEE TRANSACTIONS ON AUTOMATIC CONTROL. VOL. 39. NO. 5. MAY 1994 

I 
I 

A Family of Norms for System Identification Problems 

Mohammad-Ali Massoumnia and Robert L. Kosut 

Abstract— In this correspondence, we introduce a family of norms 
that may prove useful in system identification problems. The important 
property of the new norm is that for a given sequence, its value in the limit 
will converge to the supremum over all frequencies of the spectrum of the 
sequence. Using this property, a procedure is outlined to approximately 
minimize the weighted £TO norm of the frequency response estimation 
error. In addition, a test for checking the Whiteness of a given sequence 
is proposed. M 

I. INTRODUCTION 

The parametric approach to system identification is based on select- 
ing an appropriate model structure and a search for the parameters 
of the model that best describes the data. Usually, the best model 
within the model set is characterized as the one that minimizes a 
selected norm of the prediction errors. By far the most popular norm 
is the sum of the square of the prediction errors—the quadratic norm. 
In this correspondence, we introduce a new family of norms that 
seem to be useful in system identification problems. The new norms 
have interesting interpretation in the frequency domain and include 
the usual quadratic norm as special case. The important property of 
the new norm is that in the limit, its minimization is equivalent to 
minimizing the supremum over all frequencies of the spectrum of the 
prediction error or equivalently, minimizing its Cx norm. 
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II.    DEFINITIONS AND PRELIMINARIES 

Let us assume we are given a scalar bounded sequence {e;,i = 
1,- • ■. N] which in our application represents the prediction errors 
computed from the observed data and a guessed model parameter 
vector 6. Based on this sequence, form the (N + M -1) x M matrix 

0        ••• 0 

ENM — yw 

ei 

CM    CM-I 

e/v     es-i 
0        eN 

0 

ei 

0 0 

CN-M+l 

eN-M+2 

e/v 

(1) 

where we assume 1 < M < N. Note that ENM is constant along 
the diagonals, and for M — 1, ENI is a column vector with e,7^/N 
as its elements. To simplify the notation, we denote this vector 
by EN- Moreover, the matrix ENM is completely specified when 
EN{= ENI) and the value of M are given. 

It is simple to see that the matrix ENM ENM is symmetric, at 
least positive semidefinite, and Toeplitz. The elements of this matrix 
are estimates of the autocorrelation function of the sequence e;. More 
explicitly, define the sequence a, (i = 0, - • •, M—1) in terms of e; as 

is a first attempt to whitening the prediction error in addition to 
minimizing its variance. 

Note that the whiteness of the prediction error is an important 
factor in the validating a computed model [1]. this desirable property 
of the prediction error is not reflected, however, in any form in the 
usual quadratic norm. But VM is not only a function of the variance 
of the prediction error but is also a function of the values of the 
autocorrelation of the prediction error for time shifts up to M — 1, 
and by increasing M more and more of the temporal behavior of this 
autocorrelation affects VM. 

III. FREQUENCY DOMAIN PROPERTIES 

Now we discuss the frequency domain interpretation of the new 
norm. First assume the limit of on defined in (2) as Ar goes to infinity 
exists 

linN—oo o; =5,-. (7) 

If, in addition, S, is in h, then the spectrum of the prediction error is 

1N-i 

a, = jjYL^i+i- 

Then a simple computation shows 

a0 a.1 

(2) 

EKMENM 
ai a-o 

OM-l 

a.M-2 

O-M-l      O.M-2 oo 

(3) 

Using these definitions, we define the new norm as the maximum 
eigenvalue of EJJMENM 

VM(EN) X(ENMENM) = ^(ENM) (4) 

S«(w) =   ^2 afcC '" (8) 
fc=-oo 

where we set o_t = at because we are dealing with a real sequence. 
It is shown in [2] that the following are true: 

o0 = -[' 5«(u))du) (9) 

(10) A(CM) < sup. ,<lcScc(u) =   lim  \(CM) 
I   <— M—oo 

A(CM) > inf,w,<T S«(w) =   lim  \{CM) (11) 

where A(F) and A(F) denote, respectively, the smallest and the 
largest eigenvalue of F, and the Toeplitz matrix CM is defined as 
follows: 

CM = 

an 

ai 

a0 

ao 

OA/-1 

1A/-2 

a-M-i    a.M-7 oo 

(12) 

where A(F) denotes the maximum eigenvalues of F, and o(F) 
denotes the maximum singular value of F. For simplicity, we usually 
delete the argument of VM and assume it is understood to be a 
function of EN which is itself formed from the prediction errors a. 
Note that VM defined in (4) is not mathematically a norm on TZN; 
however, <JVM(EN) is a valid norm for EN, and only to simplify 
the presentation we refer to VM as a norm. 

Also, for M = 1, VM is identified with the usual quadratic norm. 
From another point of view, Vi only includes an estimate of the 
autocorrelation function of the prediction error for zero shift, ao. 
Moreover, VM is nicely bounded by Vi as follows: 

\\EN\\l = Vr(EN) < VM(EN) < MV^EN) = M\\EN\\l.    (5) 

To illustrate some of the properties of VM for M > 1, assume 
M = 2. The maximum eigenvalue of EJHEN? is simple to compute 
and is given by 

V2=o0 + |o,|. (6) 

In this case, not only the sum of square of prediction errors is included 
in the performance measure, but this norm also includes an estimate 
of the autocorrelation function of the prediction error at the first time 
shift. Therefore, minimizing V2 will force |ai| to small values. This 

- Theorem 1: The following limits hold: 

T 1     /"' lim   ENEN = r— /   Se<(w)du; 
N—oo 2TTJK 

lim   ( lim ^(ENM)) =supM<rS«(u>) 
M—oo \N—oo / '    ' — 

lim   (  lim O?(ENM) ) = infiwi<lr S«(u>) 
M—-oo \N—oo / — 

where we assume that N goes to infinity faster than M. 
Proof:  Relation (13) follows from the definition of 5"o and (9). 

Moreover, by definition of CM, we have 

(13) 

(14) 

(15) 

lim  ENM ENM 
N—oo 

CM- (16) 

Substituting this in (10) and (11) and noting that the eigenvalues of 
a matrix are continuous functions of the elements of the matrix, the 
other results follow immediately. D 

In identification problems, we estimate the model parameters 6 by 
minimizing VM(EN(6)). The notation EN{8) emphasizes the fact 
that the prediction error is a function of 9 and the minimization is 
carried over elements of 8. Relation (14) is very illuminating in this 
respect and shows that by minimizing VM as M approaches infinity, 
the supremum over all frequencies of the spectrum of prediction error 
is minimized. Because of this property, we refer to the identification 
problem using the new norm (with large values of M) as the £<» 
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identification problem. In contrast, by minimizing the usual quadratic 
norm, the integral of the spectrum of prediction error over all 
frequencies is minimized [I], and this can be referred to as £2 

identification problem [see (13)]. 
Now we explore the usefulness of the new norm in identification 

problems, and relate the £«, norm of the spectrum of the prediction 
error to Coo norm of the transfer function estimation error. Following 
the procedure used in [1], let us assume the true system output is 
generated by 

yt = G0((i)u, + i', 

where the additive noise v, has the spectrum 

5t,„(ui) Xo\H0(e
J")\7 

(17) 

(18) 

with H0(oo) = 1. Also assume the suggested model for the system 
has the form 

yt = G(q, 6)ut + H{q, 0)e, (19) 

where 8 is the vector of unknown parameters. Provided u and v are 
independent, it is simple to show that the spectrum of the prediction 
error in this case is given by [1] 

S«(w, 6) = 
lG(eJ", 0)|2S„u(u;) + S„(u) 

(20) 

where G — G — Go is the error in estimating the transfer function. 
Unfortunately, the term Svv/\Hf in (20), which depends on the 

parameter 6, prevents us from directly resulting the minimization of 
S« to the minimization of \G\. Using a procedure similar to the one 
outlined in [1], we can first use a high-order ARX model 

Ml)yt = B(q)ut + e, (21) 

to approximate Ho(eiu) by l/A{e.'u), and filter both u, and y, by 
A(q). Let us denote the filtered input and output by u{ and y{, 
respectively. Next use the following output error model to estimate 
the model parameters 6 

y{ = G(q,e)u{ + e,. (22) 

Now using (20) we have 

S„(ü/,*) = \G(ej", e)|2|A(e^)|2S„u(a;) 

+|A(e-"")|'2S<...(").    (23) 

If 1/\A\ is a good approximation to |ff0|, then the last term in (23) 
is a constant equal to A0, and we can write 

\G{J", 8)\*\A{e>u)\*Sm(w) ss 5«(w, 6) - Ao.        (24) 

Using (24), it is clear that minimizing the supremum of Scc in this 
case will directly lead to the minimization of the weighted €<*, norm 
ofG. Note that, as expected, the weighting |/t|2S„„ (« SUU/\H0\

2) 
puts more emphasis on the frequency ranges where the signal-to- 
noise spectral ratio is large. Also, by repeating the experiment with a 
different input (changing S„„) , we have the flexibility of changing 
this weighting factor. 

Note that if the model used for G in (22) is finite-impulse-response 
(FIR), then the new norm is a convex function of the parameters; 
otherwise, the problem in general is nonconvex and may be difficult 
to solve. 

Moreover, after minimizing VM (for sufficiently large value of 
M), we can compute a good estimate for the supremum over all 
frequencies on the left-hand side of (24). Since the supremum over 
all frequencies of the first term on the right-hand side of (24) can 
be approximated by the minimum value of VM, and the value of A0 

(variance of the noise) can be approximated when we are computing 
the ARX structure in (21), this gives an estimate for the weighted 
Coo norm of modeling error. 
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TABLE t 
SAMPLE MILAN. STANDARD DEVIATION, AND 95% CONFIDENCE 

THRESHOLD OF C FOR SEVERAL DIFFERENT VALUES on M AND N 

M 10 20 50 

1.59 3.87 16.77 
A'=I00 0.76 1.92 12.42 

3.08 7.50 36.90 

0.94 2.05 6.88 
,V = 200 0.36 0.80 3.46 

1.60 3.60 12.30 

0.52 0.99 2.64 
iV = 000 0.17 0.31 0.84 

0.84 1.53 4.26 

0.34 0.63 1.48 
N = 1000 0.11 0.18 0.38 

0.55 0.95 2.15 

IV. WHITENESS TEST 

Now we digress a little and show how the relations given in (14) 
and (15) can be used to derive an interesting test for checking the 
whiteness of a sequence. Note that a white sequence, by definition, 
has a flat spectrum (impulsive autocorrelation function). Therefore, a 
sequence is white if and only if the ratio of the supremum to infimum 
of the spectrum of the sequence is unity. Using this observation, the 
condition number of ENM as Ar and M approach infinity (with N 
faster than M) should converge to unity for a white sequence. 

With this introduction, we propose the following condition number 
test for checking the whiteness of a given sequence. Choose an 
appropriate value of M and compute the ratio 

C = (25) 

where a and W are the smallest and largest singular values of the 
ENM matrix. If C is less than a specified threshold, then declare the 
sequence as white; otherwise, declare it as nonwhite. Note that C is the 
condition number of ENM squared minus one, and hence is always 
positive; and, for a white or slightly correlated sequence, it should be 
close to zero, and otherwise should be considerably larger than zero. 

To use this test, we have to compute the values with which the 
ratio C should be compared for any given values of N and M. Note 
that assuming we are dealing with a white sequence, it is almost 
impossible to analytically compute the probability density function 
of C, and from that the necessary 95% confidence threshold. By 95% 
confidence threshold, we mean the value of a for which the following 
relation holds: 

Prob« < a) = 0.95 (26) 

assuming the sequence under consideration is actually white. 
We used a series of simulations to compute these confidence 

thresholds and the first and second moment properties of < assuming 
the sequence under consideration is actually white. For this purpose, 
for any given values of Ar and M, we generated 1000 different 
random white sequences (of length N), and in each case computed 
the ratio C given in (25). The computed results for different values 
of M and N are given in Table I. The three numbers in each cell 
of this table from top to bottom are, respectively, the mean, standard 
deviation, and 95% confidence threshold of O 

Now to recapitulate—we use Table 1 for checking the whiteness of 
a sequence as follows. Choose the value of N closest to the length of 
the sequence. Then choose an appropriate value of M. Usually, M 

^ 
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TABLE II 
NUMMBER OF TlMES THE SEQUENCES DlD NOT PASS TUG 

WHITENESS TEST AS THE POLE LOCATION r is VARIED 

Ma0, it is clear that we have «n = c„„. Moreover, it is clear from 
(31) that the following inequalities hold 

r 0 0.05 0.1 0.15 0.2 

Condition No. 
Chi-Squarc 

51 
54 

115 
83 

415 
267 

707 
577 

940 
884 

should be chosen between A'/IO to TV/50. Next choose a segment 
of the sequence with length N and form the matrix ENM, and from 
that compute the C given in (25). Next, refer to Table I and check 
whether the computed value of £ is less than the required threshold. 
If this is the case, the sequence is most probably white. Otherwise, 
it is most probably colored. 

We compared the performance of the proposed condition number 
whiteness test to the chi-square test [I], [3]. We remind the reader 
that in the chi-square test, the following sum is computed 

KTM~l 

(27) 

where the a; (t = 0, • • •, M — 1) are defined in (2), and the 
result is compared to the 95% confidence threshold of the chi-square 
distribution. The reason for choosing M — 1 as the upper limit of the 
summation in (27) is because in the condition number test only the 
autocorrelation terms up to M — 1 are present. 

For this comparison, we generated (colored) sequences by passing 
white sequences (which were uniformly distributed at each instant) 
through the first-order filter 

H{z) = —. (28) 
Z — T 

For each pole location (value of r), we filtered 1000 different white 
sequences (each being 500 points in length) by H(z), and after 
subtracting the sample mean of the sequence computed the ratio C 
and J?, in each case assuming M = 10. The number of times the 
computed £ was larger than 0.84 (the 95% confidence threshold of 
condition number whiteness test for N = 500 and M = 10) is given 
in Table II. The number of times the computed IJ was larger than 16.9 
(which is the 95% confidence threshold of the chi-square distribution) 
are also shown in Table II. As can be seen, the condition number test 
repeatedly performed better in this particular problem [it has a sharper 
operating characteristic (OC) curve (cf. [4]). We emphasize that the 
condition number whiteness test is just another test that may prove 
useful in a particular application. 

Moreover, note that for r = 0, the output of the first-order filter 
will be a white sequence, and we expect that about 5% of the 1000 
runs (50 runs) will fail the whiteness test, which is very close to the 
values that are actually obtained in these simulations for both tests. 

Finally, we indicate that there are several other whiteness tests 
that can be devised using the singular values of the E^M matrix. 
Particularly interesting tests are based on comparing the following 
ratios with appropriate thresholds 

0 = 

C2 = 

' av       ¥- 

with 

1     M 

2>? M 

a.   < "«<■ = "o < c ■ 

(29) 

(30) 

(31) 

(32) 

Note that this relation holds for any finite value of M (with M < N), 
and is the analog of the following series of inequalities 

inf|^l<x Sce(u) < — /   S.-,(w)</w < supMSirS,,(u).     (33) 

For a white sequence, the left-hand and right-hand side of the 
inequalities in (32) should converge to the same value, and the tests 
given in (29) and (30) are based on this observation. Moreover, note 
that because of (32), the ratios 0 and & are always positive, and 
for a white sequence both converge to zero as M and Ar approach 
infinity with N faster than M. 

V. CONVERGENCE AND CONVEXITY 

The norm introduced in (4) has some interesting properties that 
we shall discuss next. Let us fix M, and assume we are given a 
model structure and identify the parameter vector 8 of this model 
by minimizing Vp(E/\,-(0)) where P is a positive integer less than 
M (P < M). Let us assume this optimization problem has a unique 
global minimum that we will denote by 6P, and denote the prediction 
error sequence resulting from this choice of the parameter vector by 
E£ = EN(8P). Similarly, define 8M and Etf = EN(8M). 

Theorem 2: The following series of inequalities hold: 

Vr(E%) < VP{E%) < VU(E%) < VA,(££). (34) 

Proof: Beginning from the left-hand side, the first inequality 
follows from the fact tat the elements of Ef, are generated from the 
model parameters that minimize Vp. The second inequality follows 
from the interlacing property of the eigenvalues of a symmetric matrix 
[5]. Note that (Ef?P)TE%P is the first P x P principle minor of 
(ENM)

T
EMM, where E%P and E%M are defined in terms of £# 

using (1). The third inequality follows from the fact that Ej!f is 
formed from model parameters that minimize \'M- D 

The relation given in (34) is especially useful if we set P = 1. Then 
Vi(£^) is the minimum value of the usual least squares performance 
measure. Also, in this case, we can add another important inequality 
to the set given in (34). 

Corollary 1: The following series of inequalities hold: 

Vi(El
N) < V,(£$) < VM{Eif) < Kw(£A) 

<Vl(El.) + (M-l)m**(\n\l---,\a2
M_l\)   (35) 

where o' are computed from the elements of £\y using the relation 
given in (2). 

Proof: The first three inequalities follow by setting P = 1 in 
(34). Moreover, because Q = {El

NM)TEl,-x, is Toeplitz with a0 on 
its main diagonal, each eigenvalue of Q denoted by A satisfies the 
following inequality: 

|A-«J|<(M-l)max(|«J|,....|nji,_Il). (36) 

This follows from Gershgorin's circle theorem [5], and hence the 
last inequality in (35) holds. Note that the a) in (35) are estimates of 
the autocorrelation functions of the prediction error computed from 
parameters that are obtained by minimizing the quadratic norm. D 

Now let us assume that for a particular problem VI(EN(6)) and 
VM(EN(6)), both have unique global minimum that are denoted 
by 8l and 8M, respectively. Moreover, let us assume that in this 
problem, the last term in (35) goes to zero as the number of data 
points increases. In other words, assume for a fixed M, we have 

where a arc the singular values of ENM. Using the definition of n« 
and the fact that the trace of the EJ,ME,\M matrix in (3) is simply 

lim   max (|« 11 i|) = 0- (37) 

So 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

IEEE TRANSACTIONS ON AUTOMATIC CONTROL. VOL. 39. NO. 5. MAY 1994 

Then, using (35), it is clear thai 

lira  Vl(EN(8l))=   lim   V,(EN{0M)). (38) 

Now using the assumption on the uniqueness of the global minimum 
of V"i, it is clear that in the limit Ö1 and 8h1 will be identical. 
Stated more loosely, if the prediction error for the quadratic norm 
minimization is white, then the parameters obtained by minimizing 
the new norm will be identical to those obtained by minimizing the 
usual quadratic norm. 

To guarantee that each V\ and \'M have global minima only, let us 
choose an ARX model for the structure of the system. In this case, 
it is well known that the scaled prediction error can be written as 

EN = -J=(V - *«) (39) 

where $' is the matrix of regression vectors and Y is the vector of 
output values [1]. In this case, VI(EN[0)) in a convex function of 
8, and the minimization problem has only global minima. Moreover, 
if $ is full column rank, then the minimum is unique. 

Next we show thalfor an ARX model structure, VM is also a convex 
function of the parameters. To see this, note that the matrix ENM 

can be written as 
M M 

ENM = ^TiEnwJ = -^==£Y,(y - M)wT       (40) 
«=i v A 1=l 

where to, € TZ.M is the standard basis column vector with 1 in its 
ith entry and all other elements zero. Also, the (N + M — 1) x Ar 

matrix T, is defined as 

T, =       INXN       ■ (41) 
0(- )xN 

IN xN 

P(M- i)xN. 

Moreover, denote the :th column of <£ by </>; and the ith element of 
8 6 nL by 0,-. Then (40) can be rewritten as 

L 

ENM = Co + /  Cj8j 

M 

* = TTJSFD^ x/ÄT 
M 

c> = -hY?>*j v/iv; 
T (42) 
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(compared to quadratic norm for a given model order) when the true 
model is not actually inside the model set. 

As we have shown previously, for an ARX model structure, the 
matrix ENM is affine in the parameters, and we are interested in 
minimizing the maximum singular value of ENM. This problem 
is already discussed in the literature [6], and a recent algorithm is 
proposed in [7]. By exploiting the special structure of the matrices 
C, defined in (42), however, it may be possible to increase the 
efficiency of the algorithm in [7]. Also, in our application, the size 
of the matrices involved is quite large, and special attention should 
be paid to the memory management and algorithmic implementation: 
otherwise, huge amounts of memory will be required to perform the 
optimization even for modest values of M and Ar. 

VI. CONCLUSION 

Although we have presented some preliminary results on the 
properties of the £oo identification problem in this correspondence, 
much further work is required to explore the properties of the new 
norm in details. To perform this task, an efficient implementation 
of the required minimization algorithm is required so realistic high- 
order models can be estimated and their properties can be compared 
to those of the least square minimization. As we previously noted, 
the convexity of the new norm when an ARX model is used 
is an important property, and hence many techniques of convex 
optimization can be used for the solution of this problem. 
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Note that C>, j = 0, • • •, L, have the same special structure as ENM, 

namely, being constant along the diagonals. Now, using (42), it is 
clear that ENM is affine in 0, and CT(ENM) is a convex function 
of 8. Therefore, VM, being the square of W(ENM), is also a convex 
function of 8, and the minimization problem has only global minima 
in this case. 

Using these facts, if we use an ARX model structure, and if it hap- 
pens that the resulting prediction errors are white (and consequently 
the relation (37) holds), then we are guaranteed that the parameter 
estimate using the new norm will be same as the parameters using 
the quadratic norm for Ar —• oo. This is promising because, for 
the sum square norm and ARX structure, there are many established 
properties [1] that readily extend to the new norm. 

If the prediction error sequence is not white, however, which will 
be the case if the "true" model does not have an ARX structure, 
then the estimate given by minimizing VM will usually be different 
from those obtained from the quadratic norm minimization. Note that 
the new norm forces the autocorrelation of the prediction error for 
nonzero shifts to small values (whitens the prediction error), and this 
property may result in a better estimate of the model parameters 
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I 

Abstract Two least-squares based methods are presented for 
obtaining ARX model sets. The first is obtained using proper- 
ties of high-order ARX models and the second uses a stochastic 
embedding scheme on the residuals from an ARX model of any 
order. Either of the ARX model sets is useful for robust control 
of systems with uncertain parameters. Using the high order ARX 
model approach, the parameter uncertainty lies in a confidence el- 
lipsoid. Using the stochastic embedding approach, the parameter 
uncertainty is ia confidence box. For scalar plants, both cases can 
be handled using convex programming to obtain the exact stabil- 
ity robustness margin for a particular controller. However, because 
the uncertainty description is probabilistic, the robustness property 
has to be associated with a confidence level, i.e., a probability of 
stability. 

The problem addressed here, referred to as set estimation, is to use 
the above information to determine a set description of the plant 
useful for robust control design. For example, consider the plant 
set1 

M {y = (G + AW)u + He | ||A||Hä> < 9, e € E(A) } 

1     Introduction 
Suppose it is desired to control the single-input-single-output sta- 

ble discrete-time system, 

y = Gu + He,    e € E(A) (1) 

where: 

• G and H are known only to be causal linear-time-invariant 
(LTI) stable systems with unknown transfer functions G{z) 
and H{z), respectively. 

• The sequences y and u are, respectively, the sensed output, 
and the applied control input. All that is available is the 
finite data record 

{Vt.ut  \t = l,...,N} (2) 

where yt and ut are the values of the sequences y and u, re- 
spectively, at the sample time t. 

• The sequence e is unpredictable, but is known to be a member 
of the set E(A) where A is unknown: likely candidiates for 
E(A) are POW(A), the set of sequences with power bound 
A, or JLLL)(A), ii.d. zero-mean sequences with variance A. 

If E(A) = POW(A), then M is typical starting point for H« con- 
trol design. If E(A) = HD(A), then mixed W2/H00 control design 
methods apply. There are many combinations possible. However, 
in all the above cases, the quantities with "hats" are available a pri- 
ori to the designer, which is not the case here. These quantities are 
to be estimated from the data and a priori information. 

In the remainder of the paper, we show how least-squares esti- 
mation can be used to obtain a plant set estimate. We examine two 
cases: (i) high order model set estimation, and (ii) model set esti- 
mation via stochastic embedding. Related techniques can be found 
in [5] and the references therein. 

'Supported by AFOSR, Directorate of Mathematical and 
Computer Sciences, Contract No. F49620-90-C-0064, NSF 
U.S./Australia Cooperative Research Program, Travel Grant INT- 
9014152, and the Australian National University as a Visiting 
Fellow. 

* Supported by the Cooperative Rersearch Center Program of the 
Australian Government 

2    Least-Squares Estimation 

Parameter estimation via least-squares with an ARX3 model 
structure is perhaps the most widely used approach to system iden- 
tification. The standard (e.g., [7]) parametric ARX model set is: 

MARX : {Aev - Beu + e | B € R", e € IID(A) }        (3) 

n m 

Ae    =    l + ^oiz-^,   Be = ^T 6<2~' 

6     =     [ai---a„ b1---bm]T 6 Rp,   p = n + m 

Thus, the ARX model output at tome t is given by, 

Vt    =    <t>fe + e, 

where 

i>T     =     [-Vt-1 • - Vt-n ut_i •Ut_m] 

'If A is stable, ||A||Hoo = sup,, |A(eJw)|, otherwize, ||A||Woo = 
00. 

2ARX is the standard acronymn for system models with an Au- 
toRegressive term (Ay) and an eXternal input (Bu). 

I as 



The least-squares parameter estimate, based on a finite data record, 
is found from: 

AT 

\2 0 = arg nun — ]T(y, - BT<t>t f (4) 

Limiting Properties   It is well known [7] that 

8 —► 6, as N —► oo, w.p. 1 
where 

0 = argmin^-  /     S„r(u/,$)du/ mm —  / 
«    2ir / 

j — i 

with the "error" spectrum given by, 

SCrr{w,6)     =     |Ae(^)G(^)-Be(«J")|25u„H 

+    A|i4e(e»'w)H(eyw)|2 

Much more can be said when the system (1) is in the ARX model    where 
set (3), i.e., when there exists a parameter 0O  G W such that, 
-Ae0G - Be0 = 0 and yieoJ/ = 1.   In this case, ? = 0O and the 

parameter error ?- 0O is asymptotically normally distributed i.e., 
as TV —<• oo, 

>/tf(?_ oo) - Mio.xefatT)-1) (s) 
where £M denotes expectation.  In addition, consistent estimates 
of £(4>t<Pi) and A, are given by 

t=i 
with 

et = yt - 4>jB 
the estimated prediction error. 

Large N Properties   To simplify notation set 

A = Ap B = B- 

Define 6 € RP as the normalized (unknown) parameter error, 

S = R}'2($- 60) 
Then, the true system (1) can be expressed as: 

Äy = Bu-6TR-1>2<f>+e 

It follows that for sufficiently large N [7]: 

5e^(o,A) md ^£l£e:r(pJV_p) 

where ^(p, JV - p) is the F-distribution with degrees of freedom p 
and N — p. Hence, 

(6) 

(7) 

(8) 

Prob{5rfi < ^a(„)A} = „ 

can be determined from an F-distribution table. To be safe, suppose 
we set 77 very high, say, TJ = .999. Then for typical numbers such as 
N > 1000 and n = m = 10, we get a(.999) = 2.27. For large n, say 
n - m = 60, and large N > n^we get a(.999) « 1.45, and so on. 

In addition, for large AT, e € E(A) with high probability. Hence, for 
large n, m, and N, the system (1) is in the model set 

Ay = Bu-6TR-1l24> + e 

M LARX : < STS < £«(„)* N 
. e€lID(A) 

with probability of at least t). Observe that the model uncertainty in 
this set is represented as a norm bound on the normalized parameter 
error with a probability tag which can be selected close to one. 
Putting aside for the moment the issue of whether or not the true 
system is in the model set, it is therefore logical to pursue robust 
control with this type of parametric uncertainty. 

3    Robust Control with ARX Set 

In this section we discuss the issue of robust control design retain- 
ing still the assumption that the true system is in the ARX model 
set MARX of (10). Suppose we apply the LTI feedback controller 

u=-Ky (n) 

where K stabilizes the "nominal" ARX system (5 = 0), 

Ay = Bu-r e 

Applying the control to the actual system model (7), gives the 
closed-loop system 

-Qs l-STh 
T 

-Q 

T     =     ^r- K 

A + BK 

=    R-1'2 

A + BK 

r r z~x i DT 
,   D = 

DQ . 
L   2~" 

Because K stabilizes the nominal system, T, Q and A are all stable. 

Recall from the Nyquist theorem that since A is stable, the closed- 
loop system is stable if and only if, for all u>, 

|1 _ 5^(^)1 ,£ 0,      VST6 < r2 < r,2
tlb 

where r,tlb, the "real" stability margin is given by, 

r,tlb = inf inf {sTS = r(w)2  I o~rÄ(eJ"') = 1 \ 
w  r(a») k ' ' J 

Calculating r(w) involves finding the minimum norm (least-squares) 

solution to the over-determined set of equations 6"TA(e>'") = 1 at 
each frequency. As shown in [10], an easy calculation yields. 

,   ,,       f   l/(IH|2-(aT6)2/||6||2],     6#0 
r(w)   H , (12) 

I   1/IHI2, 6 = 0 
where 

a = Reh(eJ'"'),   &=Im/i(e>1") 

Hence, a "probability of stability" can be stated as follows. Since 

(9)     it follows that 

Prob{fiT5 < ^a(r,)A} = „ 

—or(r,)A < r2
ub Prob{(l - sTh)-1 stable} > „ 

In the more general case, calculating the stability margin, rj:i.b, for 
other than the two-norm of the parameter error, can be cast as a a 
convex programming problem, e.g., [10]. However, no closed form 
or convex programming solution is known in the MIMO case. 

do)     4    High-Order ARX Model Set 

The analysis in the previous sections depended on the true system 
being a member of the parametric ARX model set. Although this 
is never true, it is a fact {e.g., [7]) that the system (1) is equivalent 
to the infinite order ARX model: 

Ay     =     Bu + e (13) 

where 

K 



A    =    H-* = l + J2 akz 

I 
I 
I 
1 
I 
I 
I 
I 

fc=l 

"-1G=£ bkz~ 

(14) 

(15) 
*=1 

Because H   1 and H   'Gare stable, there exists positive constants 
Ma,Mb, and p < 1 such that 

\ak\ < Map
k,     \bk\ < Mbp

k 

It therefore follows that the n-th order ARX model, 

Any     =     Bnu + e 

with 

An     =     1 + Vjafcz" 

n 

(16) 

(17) 

(18) 

can, for sufficiently large n.arbitrarily well approximate the infinite 
order ARX model, and hence, the original system. Specifically, it 
is easily shown that \\AnG - B^^ and \\AnH - l||Koo approach 
zero exponentially as n goes to infinity. As a resultTit is very 
tempting to use the previous result with very high order models, 
particularly since it is very easy to compute such models. The 
following example illustrates this approach. 

Example The following example is presented without figures 
- no room! Take the true G{z) as the zero-order-hold equivalent 
of n2/(s2 + 2<nS + fJ2) with n = 2TT(.1) rad/sec, C = .15, and a 
sampling frequency of 2 hz. Take the noise model as H = 1 with 
e € IID(.22) and with input u 6 IID(l). Hence, the rms noise 
to signal ratio at the output is rms(e)/rms(Gu) = .28. The sys- 
tem was simulated with u and e drawn from the previous distribu- 
tions. Least-squares identification was performed for time samples 
t = 1 : 512 for model orders n = m = 1 : 40. All the models 
were validated on a different data set for t = 513 : 1024. From the 
validation set, the minimum rms value occurs at n = 14. Because 
larger orders show an increase in rms, any models of order higher 
than 14 must be trying to fit the particular noise realization dur- 
ing identification. The fits in magnitude are very similar, but get 
more noisy at high frequencies. Since the true noise has a constant 
spectrum, we see that the higher orders are being used primarily 
to flatten the estimated spectrum. One would therefore expect a 
significant number of pole-zero cancelations in the estimated trans- 
fer function. This phenomena is dramtically visible in a pole zero 
plot of the estimated transfer function. Moreover, it is interesting 
to examine the Hankel singular values as well. 

An «2 controller was designed using the 14th order model. (We 
know this controller stabilizes the true system, because in this case 
the true system is being simulated. Normally, of course, the true 
system is unknown to the designer.) Although the closed-loop sys- 
tem is stable and seems to behave well, the robust analysis suggests 
testing the worst-case plant possible from the ARX model set. By 
examing the paramaetric stability margins vs. frequency (12) for 
probability .95 and .995, respectively, it can be seen that at about 
.5 hz, the closed-loop system is just stable for a .95 probability and 
just unstable for .995. The interpretion is that there exists a plant 
in the ARX set which could have produced the data with the same 
statistics. Since this plant would cause considerable trouble for this 
controller, the controller should be redesigned. , e.g., the loop gain 
should be reduced in the .5 hz range. 

Caveat Emptor There are several impediments to using the 
high-order ARX estimation and robust control design approach just 

described. First, if "Hi or Hoo methods are useed for design, the 
controller (11) will also be of high order - although in most cases it 
is easy to reduce the controller because of the many stable near pole 
zero cancelations in the estimated model. Secondly, a determination 
of what is meant precisely by high order is dependent on a priori 
knowledge about the true system. Thirdly, the statistical properties 
are based on very large data lengths, and a precise value of "large" 
depends on the true system properties. 

To offset the high order problem, an alternative is to use a more 
parsimonious model parametrization. For example, use of Laguerre 
or Kautz expansions, as proposed in [11], can result in considerably 
fewer parameters to obtain the same level of approximation as a 
model expanded in the backward shift operator z-1. However, the 
efficacy of this approach depends on prior information regarding the 
accuracy of some dominant pole locations. 

5    Residual Analysis and 
Stochastic Embedding 

The stochastic embedding principle developed by Goodwin et 
al.[3] provides a completely stochastic framework for model error 
estimation. No assumptions on model order or data length are re- 
quired. The basic idea is to view model error as a realization of 
a random variable with zero mean, whose variance is described by 
a few parameters which captures the structure of the model error. 
In other words, the complicated problem of relating the bias to 
the data and the mismatch in structure of the true system and the 
model is avoided. By modeling the error in this seemingly rudimen- 
tary form, an error model set parametrization is obtained which is 
described by a small number of parameters, yet is capable of rep- 
resenting a large set of error models. In [3] a Maximum Likelihood 
(ML) approach is used to define the estimates of these model error 
parameters. In this section, we use the stochastic embedding prin- 
ciple, but applied in a slightly different way, avoiding some of the 
approximations involved in solving for the ML estimate. Although 
no prior assumptions about high model order are required, the re- 
sults presented here - unlike those in [3] - are asymptotic in data 
length. 

To apply the stochastic embedding principle of [3], we proceed as 

follows: suppose we have obtained ARX estimates A, B from some 
finite data record. Since the true system (1) is y = Gu + He, it 
follows that the prediction error is: 

with 

e    =     Ay — 5u = An -f 1 

A     =     AG-B 

w     =     AHe 

(19) 

(20) 

(21) 

As before, our goal is to make some kind of estimate covering A. 
Towards this end, form the (asymptotic) prediction error correlation 
coefficients: 

IfueIID(Au), then: 
ck = £(ei<r,+fc),    Vh>0 

ck= < 

where 

A«, + A„^S2,     fc = 0 
i=l 

oo 

Au^5,-5,+fc,       k>l 

•=1 

(22) 

(23) 

(24) 
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and {61,62,...} are the impulse response coefficients of A, i.e., 

A(z) = J2Si*~i (25) 
1=1 

Since A is stable, there exist positive constants Ms and p < 1 such 
that 

I*. I < Af,p'--i (26) 
Hence, x    ' 

Au, 4~ Au - 

Clearly a solution exists iff there is a real root 0 < ß < 1.   ßy 
replacing c\ with Ss(c?k) we get the polynomial in ß/ß: 

-£(4-^)(f)* 

l<*| <  < 
1-p2 

Au 
1-p2 

fc = 0 

fc>l 

(27) 

Observe that for k > 1, the correlation coefficients decay exponen- 
tially with k Hence, information is contained in the correlation 
coefficients about the model error A in the form of bounds on the 
impulse reponse coefficients {Sl,S2,...}. The problem with (27) is 
that only bounds are provided and thus it is difficult to infer esti- 
mates of Af, and p from ck or estimates of ck. The key is to utilize 
the stochastic embedding put forth in [3]. 

Stochastic Embedding Make the further assumption that 
the model error is a realization of a stochastic process such that: 

Clearly ß = ß ls a solution, and certainly the desired one in that 
a - or. In fact, ,t can be shown that, on average, the only real 
solution hß = ß. Even though L can be quite large, e.g., L = 1024 
is typical, it js actually very easy to solve for ß by a simple bisection 

search over ß. Although this method is similar to that developed in 
13], here an exact solution to the max-likelihood problem is possible 
because the data is taken to be the asymptotic prediction error 
correlation coefficents, ,.e., infinite data. Clearly errors will be 
introduced ,n computing the coefficients using finite length data 
This requires further analysis. 

Having found the estimate p, A,, an estimate for Xw follows from 
the expression for Co, that is: 

Am = Co — At 
Af 

1-p (36) 

As a result, there holds 

£fCk = 

;Sr e HD(A,) 

- + A„ *■ 
1-p2' 

0, 

k = 0 

fc>l 

(28) 

(29) 

Hence, the end result of the max-likelihood/stochastic embedding 
approach is the following ARX model set: 

Ay = Bu + Au + w 

M ARX 

Since there is no information in the mean regarding the pulse re- 
ponse decay, it is necessary to compute the variance. Thus, 

£*cl = A
2 = I2  A*P 

l-O« 
Vfc>l (30) 

fc=i 

9* e nD(A,) 

L   £(wt)
2 = Xw 

(37) 

We restrict attention now to * > 1 becasue the information we seek 
appears only in those coefficients. Observe that the model error has 
been captured by a parametric stochastic description with just two 
free parameters Xs and p. J ° 

,J^f-e "* ?°C
W feVe,ral WayS t0 fit the samPle vari*™* 'o this 

expression and find values for Xs and p which achieve the best fit 
One approach to estimating these parameters is to fit a gaussian 
cWnbut.0ntothecorrelationcoefficientscfc,Jt > 1. Thatisfassume 
mat i_ck J k _ 1 : L } is an independent gaussian sequence with zero 
mean and variance aß" where 0 < ß < 1. Thus 

ß = P2,      a= Xl *3 
(31) *1 —   * ' 

,=Vß. M,=vA7=(£(L^)y/4    (32) 

Taking amax-likelihood approach, the negative log likelihood func- 
tion is then: 

L 
*  -      .       T 

-logor + 

6    Robust Control Analysis 

In this section we discuss the issue of robust control design un- 
der the assumption that the true system is in the ARX model set 
lv*ARX^of (37).   Following the discussion in section , the control 

"n T^M-Whi<?1 8tabai?<? the nominal ARX system Ay = Bu + e 
will stabthze plants in MARX iff the closed-loop transfer function 

>-WWft (38) 

is stable where Q = K/(l + GK) as before and now 

M*) = QMP*-
1
*-* (39) 

ftS "ki }}D(X<\"*hmtyis ««•* -«-in - a «probability of 
stability In this case, the uncertain parameters qk are bounded in 
magmtude, rather than in an ellipsoid as before. SpecificaSy sTnc" 

C=±Y clß-* 4- k ,„,„ j. HL + 1) 2^Z^ 
*=l 

log/? + constant   (33) 
it follows that 

Prob{sup9
2 < a(r))X} = j, 

The nunimizing values a and ß satisfy: 
«<•»£< r?«ab =* Prob{(l - 2**W»)-X «table} > „ 

fc=l 

•  -  £('-*?)& 
(34) 

(35) 

In this case the stabüity margin is defined as: 

ritib = inf inf 
w   r(w' \[l = r(u,)2 

^W")?* = 1 (40) 
fc=l 

Although this is an infinite dimensional convex programming prob- 
lem, nonetheless a solution is readily obtained e.g., [10]. 
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7     Concluding Discussion 

Two least-squares based methods have been presented for ob- 
taining ARX model sets. The first is obtained using properties of 
high-order ARX models and the second uses a stochastic embedding 
scheme on the residuals from an ARX model of any order. Various 
asymptotic approximations are used in obtaining either set, and 
their effect is under study. Either of the ARX model sets is useful 
for robust control of systems with uncertain paramaters. However, 
in this case the uncertainty is random and so a notion of probability 
of stability is introduced. In other unpublished work of the authors, 
methods are being developed for analyzing the more practical situ- 
ation where the data set is finite. 

In this paper only some of the many properties of least-squares 
parameter estimation with ARX models have been examined. There 
are many properties of least-squares estimation that may yet be 
profitable for obtaining set estimators useful for robust control de- 
sign. For example: 

1. The least-squares solution is unique and provides the global 
minimum in closed-form, which in the ideal case allows for a 
complete asymptotic statistical analysis. 

2. By utilizing "square-root" numerical algorithms, i.e., SVD or 
QR algorithms, the solution can be efficiently and rapidly com- 
puted even for very high orders. In particular, with the QR 
method: 

(a) all models are simultaneously computed up to a speci- 
fied maximum order and stored in a square-root matrix 
whose size is determined by the maximum model order, 
not data length. 

(b) prediction error variance vs. model order (up to the 
maximum) is available as the last "column" of QR. 

(c) results of different experiments are easily joined, i.e., 
there is no need to re-compute over both data sets. 

(d) high-order models are easily computed; very rapid com- 
putation is possible with lattice algorithms. 

3. The impulse response coefficients, up to the order of the nu- 
merator polynomial, are asymptotically unbiased. 

4. The estimates have orthogonality properties which are not de- 
pendent on assumptions about the character of the uncertain 
disturbance, e.g., gausssian, worst-case, and so on. 

Propery 3 is quite appealing. Specifically, if the input u is 
white, then the first m impulse response coefficients of the true 
input/output transfer function G are asymptotically unbiased. Re- 
call that m is the order of Bg, the numerator polynomial in the 
ARX model set. It is interesting that the result does not depend on 
n, the order of Ag, the ARX denominator polynomial. Moreover, 
the true system need not be in the ARX model set! 

This result was originaly proven in [9]. Other useful results fol- 
lowing from this fact can be found in [1]. To summarize the result, 
let 

The result from [9] is as follows: 

u G IID(A„) => gk 

6     =     arg min £{yt — 6   <bt) 

= !=!>' 
*=1 

: Sfc. Vfc = 1 : m (43) 

This result together with the use of an appropriate affine model 
expansion (e.g., Laguerre or Kautz) may prove most beneficial. An 
affine model set, e.g., a Laguerre expansion for G, can offset the 
issue of determining what is meant by a large data length. More- 
over, with this model, it is possible to precisely compute statistical 
properties for any given model order or data length - no asymp- 
totic assumptions are required, e.g., [6]. The stochastic embedding 
scheme developed in [3] uses such an approach, and if applied as 
proposed here, it may be possible to eliminate all the asymptotic 
requirements, i.e., large data length or high model order. 
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Abstract    To falsify or imfalsify - that is the question. 
It is shown that unfalsification of the standard robust control de- 

sign uncertainty model is a natural replacement for system identifi- 
cation when the intended use of the model is robust control design. 
For the ARX model, the unfalsification step requires solving a set of 
convex programming problems, specifically LMI problems, of which 
ordinary least-squares is one member. The result is a tradeoff curve 
between model uncertainty and disturbance uncertainty. Hence, a 
family of models are unfalsified from the data record. The tradeoff 
curve is given a frequency domain interpretation via the DFT and 
related computational issues are discussed. 

Introduction 
Traditional system identification must be modified in order 

to be compatible with robust control design. The nature of 
the modification arises from two fundamental principals un- 
derlying robust control design: (1) models are inaccurate, and 
(2) a good control design can withstand model inaccuracy. 
Hence, robust control design does not require a unique model. 
But traditional identification extracts a unique model from 
the data, i.e., as described by Ljung [11], a criterion is posed 
and minimized over a set of candidate models. Unfortunately, 
there is no means to provide a measure of the identified model 
uncertainty, i.e., bounds on model error and disturbances. 

In contrast to system identification, a model is said to be 
validated if and only if it could have produced the data. Val- 
idation is perhaps a misnomer, as one can never prove that 
a model will be able to accurately predict the future. How- 
ever, the data can falsify a model, i.e., the model may prove 
to be incapable of producing the data. Hence, a precise term 
is unfalsification. 

Clearly unfalsification is a feasibility problem - find a 
member of the model set that is consistent with the data. 
Identification poses an optimization problem, e.g., pick the 
unfalsified model that has the smallest noise variance. Why? 
It is certainly possible that some other unfalsified model would 
produce better closed-loop performance. 

In consequence, for robust control design, it is logical to 
replace system identification with unfalsification. In addition, 
postulate a model set suitable for robust control, i.e., an un- 
certainty model which includes both disturbance and dynamic 
uncertainty descriptors. Thus, in summary, two changes must 
be made in the system identification process: 

1. postulate a candidate model set which includes descrip- 
tors for both disturbance and dynamic uncertainty 

2. use the data to produce all unfalsified models in the can- 
didate model set. 

•Author is with Integrated Systems, Inc., 3260 Jay St., Santa 
Clara, CA 95054, kosut6isi.com 

t Research supported by the Air Force Office of Scientific Re- 
search, Directorate of Mathematical & Computer Sciences, under 
Contract No. F49620-93-C-0012. 

Having produced a set of unfalsified uncertainty models, the re- 
maining question is how to select an appropriate model. Since 
the ultimate goal is closed-loop design, we are naturally led to 
evaluating each unfalsified uncertainty model by designing and 
implementing a robust controller based on the model. Thus, 
we have the following iterative scheme: 

1. Find all the unfalsified uncertainty models corresponding 
to the current data set. 

2. Test each unfalsified model, in some order, by applying a 
robust controller based on a particular unfalsified uncer- 
tainty model. 

3. Those controllers that yield performance better than or 
equal to that predicted do not falsify the underlying de- 
sign model. As soon as performance is worse than pre- 
dicted, the underlying model is falsified. The unfalsifica- 
tion process can then be repeated with this new data. 

Hence, actual measured data is used to rank the models via 
the effect of a corresponding robust control design. 

This paper principally focuses on the unfalsification step 
with a brief discussion of a particular iterative scheme which 
follows the broad outline described above. 

Previous Research Several approaches have been put 
forward which involve iterating between identification and 
control design, e.g., [15, 8, 20, 7]. A good survey is provided by 
Gevers [4]. A fundamental difficulty with iterative approaches 
is that in order to prove (analytically) that the iteration will 
work requires solving very difficult fixed-point problems, e.g., 

The framework for uncertainty model unfalsification and ro- 
bust iterative control design presented here, which avoids some 
of the difficulties encountered with many iterative schemes, 
was inspired by the work of Poolla et dl. [13]. This approach 
is also heralded in the short essay by Dahleh and Doyle [3], 
with further development in the paper by Livestone et dl. [9] 
and dissertation [10]. The uncertainty tradeoff curves derived 
here was first presented in [7], but at that time there was no 
framework upon which to provide a raison d'etre for the result. 

These approaches differ from that proposed by Safonov et 
dl. [17, 18, 14] where a controller set is postualted and mem- 
bers are unfalsified directly from input/output data. In a 
sense, no model is required except that implied by the per- 
formance criterion. In addition, controllers can be falsified 
without having to be implemented. In model unfalsification as 
described here, a natural ordering of models is provided based 
on model error magnitude. Thus, a combination of model and 
controller falsification may prove to be the most practical. 

Organization of Paper   The first section provides a brief 
review of classical least-squares prediction error methods of 
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system identification. This motivates uncertainty modeling 
and the subsequent unfalsification procedure which links iden- 
tification and robust control in a natural iteration. Frequency 
domain interpretations are presented which provide a means 
for efficient computation. 

Prediction Error (PE) Identification 

This section provides a brief review of the classical para- 
metric prediction error method of system identification. The 
formulation and notation closely follows the presentation in 
the textbook by Ljung [11]. 
Data and True System Let uN and yN denote, repec- 
tively, input and output data which has been recorded at the 
N integer sample times t = 1 : N. Thus, 

yN = {v(t)}?=1,   «" = {«(*)}£, (i) 

For purposes of analysis, we make the following assumptions 
about the true, but unknown system, which generated the 
data: 

• The true system is stable and operating in open loop, 
with input/output behavior described by, 

y = Gu + v (2) 

where G is a causal, stable, linear-time-invariant system 
with unknown (zero-order-hold) transfer function G(z), 
and v is a disturbance with spectrum 5„„(w) which is 
independent of u, i.e., Suv(w) = 0. It is also assumed 
that u has spectrum Suu{w). 

The identification problem is to map the finite data (1) into 
estimates of G(z) and Svv(u), with the additional constraint 
that we want the estimates to be "good enough" for closed- 
loop control design. The first step is to pick a candidate model 
set which might be able to explain the data. 

Prediction Error (PE) Model Classical prediction er- 
ror identification postulates the model set: 

y = Geu + Hew,      6 £ 0,      tu€Wwh,(<7) (3) 

where w is an unpredictable sequence drawn from the set 
Wwht(cr) consisting of white noise sequences with variance a2, 
Ge and Hg are causal, linear-time-invariant systems, initially 
at rest, with transfer functions Ge{z) and Hg(z), respectively, 
and are dependent on a parameter vector 0 in the set, 

0 = {9 £ R"  | ff"1 and H^Gg are stable } (4) 

As explained in [11], parameters in the above set insure that 
the predictor associated with the model set is stable. Specifi- 
cally, the corresponding one-step ahead prediction error is, 

ee = He
1(y-Geu) (5) 

Hence, 0 £ 0 implies that (y, a) -» e8 is a stable system. 
Moreover, if the data (1) was actually generated from (3), 
then ee{t) -* w(t) as t -+ oo. 

It is often the case that the prediction error is modified by 
a data filter, F{z), that is, ee is replaced by Fee. Typically, 
F is a (stable and minimum phase) pass-band filter. As will 
be seen, the data filter is particularly important for indirectly 
manipulating model error (bias). 

Observe that the data filter could be considered part of the 
disturbance model by replacing Hg with F^Hg. Hence, an 
alternative form of the model set (3) is: 

y = Ggu + F-1Hew,      0 £ 0,      w £ Wwht(<r)       (6) 

which leads to the (filtered) prediction error 

ee = FHä\y-Gen) (7) 

The filtered model (6) will be used throughout the remainder 
of the paper and referred to as the prediction error model, 
abbreviated by PE model. 

Least-Squares Identification System identification, in 
the prediction error context, usually means performing the 
following "least-squares" optimization: 

N 

6N    =    arg  min   — S^egft)2 
(8) 

where eg{i) is an element of the prediction error data sequence, 

<$ = W(*)}£, = FH^y» - GeuN) (9) 

When the true system is in the postulated model set, the op- 
timal error spectrum is constant and equal to the variance 
of the white noise sequence. When the true system is not 
in the model set - the usual case in practice -there is no 
true parameter and the estimated transfer function has a "bi- 
ased" frequency response, i.e., there is no 6 £ 0 such that 
G(eJ") - Ge(eJW) = 0 for all u, 

As shown in [11], the mean-square model error can be com- 
puted asymptotically for large data length N and large model 
order p. Specifically, for large N, large p, and small P/N, 

E |G(eJ") - GgN(e}")\2 ~ S. S""(w) 
1 N   Suu(w) 

where E denotes expectation with respect to the noise v in (2). 
However, a quantification of "large" or "small" is not known 
and thus the above expression cannot be used to reliably pre- 
dict model error. 

ARX Model Structure A practical difficulty with using 
the general model structure (6), is that there is no guaranty 
that the least-squares criterion has a unique global minimum, 
although in most cases standard descent methods of optimisa- 
tion will attain a local minimum. Partly because of this rea- 
son, the most widely used model structure is the ARX model 
where: 

Ge(z)    =    Be(z)/Ae(z),      He(z) = 1/Ae(z) 

Ag{z)    =     1+aiz-1 + ... + anz-"
A 

Bg(z)    =    bxz-1 + ... + bnz~nB 

9    =    [ai---anAbi---bnB]T £RP,   p = nA+nB 

Hence, the standard ARX model is: 

Agy^Bgu + F^w,      BeR",      to€Wwh,(o-)        (10) 

with the corresponding prediction error, 

eg = F(Agy - Bgu) (11) 

which is affine in 6. Thus, least squares optimization is con- 
vex, and the minimizing 9 is readily and efficiently obtained 
numerically using SVD, QR, or lattice methods. 
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Modeling for Robust Control The uncertainty model (12) 

I 
I 

The type of model used for robust control design, referred 
to as an uncertainty model incorporates an additional term 
which accounts for a class of dynamic uncertainty. 
PE Uncertainty Model    Specifically, the PE model (6) 
is modified as follows to obtain the uncertainty model: 

y = Geu+F~1He(w+Au),    0€0,    w € W(<T),    A G A(7) 
(12) 

where W(<r) is a set of bounded sequences with bounding 
parameter c - not necessarily white noise sequences. Observe 
that now the model includes a dynamic uncertainty set, A(7), 
with 7 denoting a system bound. The most common set used 
for robust control design is the set of H,» bounded systems, 

A(7) = {A(Z)  |||A|L<7} (13) 

with the corresponding prediction error, 

y^Geu+F^Heiw+Au),  0 € 0, < *>  HAIL < 7 

is said to be unfalsified by the jv-point data sequences 

(1), 

yN = {»(*)}£, -    «" = W0JÜL, 
if and only if there exists 8 € 0, an N-point sequence 
wN = {w(t)}^!_1, and a system A, such that: 

HAIL < 7     with     A  :  u" *- ee ~ wN (20) 

and 

HI™** 

ee = FHe   (y — Geu) = w + A« (14) 

In addition to the "random" component, w € W(<r), the pre- 
diction error also has a "bias," or dynamic uncertainty com- 
ponent, A € A(7). In particular, with the true system given 
by (2), w and A are, 

w = FHe~1v,      A = FHg1(G-Ge) (15) 

In the ensuing discussion, let W(<r) be the set of sequences 
with bounded RMS, i.e., 

N 

W(or) = {w  | |H|rmf < a } ,      H|?m. :=   lim   ± £ w{tf 
t=l 

(16) 
When the parametric model has the ARX structure, the 

uncertainty model becomes: 

Aey = Beu + F-1(w +An),   ||t»||rm. < <r,   ||A|L < 7 (17) 

with 6 £ Rp and the corresponding prediction error, 

ee = F(Aey - Ben) = w + Au (18) 

If the true system is given by (2), then w and A become, 

w = FAev,     A = F(ABG-Be) (19) 

Observe that if F is a lowpass filter, then outside the filter 
bandwidth the uncertainty can be very large, whereas inside 
the filter bandwidth the uncertainty could be modest. 

Unfalsification 

Given some input/output data, the problem is to find a 
consistent set of uncertainty model parameters (0,7,<T). This 
problem is similar to the uncertainty model validation problem 
addressed by Poolla et al. [13]. In the case investigated there, 
the uncertainty model parameters are known and the uncer- 
tainty model is validated (unfalsified) from data. We use the 
same theory here (in reverse) to estimate the parameters. 

We first define the unfalsification problem for the PE un- 
certainty model (12), and then specialize to the ARX case. 

• PE Uncertainty Model Unfalsification 

(21) 

where e^ is the N-point prediction error data sequence, 

eg = FHe-1(yN -Geu
N) (22) 

The key for establishing whether an uncertainty model is un- 
falsified is to prove (20). For LTI systems we have the following 
result which is stated in [13]. 

• LTI Unfalsification Given jv-point sequences uN = 
{u(<)}(=1 and zN = {z(t)}t=1, there exists a stable, 
causal, LTI system such that 

||A|L < 7     and     zN = AxN 

if and only if (23) 

T(zNfT(zN) < 7
2T(uNfT{uN) 

where T(-) maps an w-point sequence into aji NX N lower 
triangular Toeplitz matrix, e.g., 

T(U») = 

u(l) 0 

u(2) u(l) 

0 
«(1) 

(24) 

U(N)    U(N — 1) 

Applying the above result yields the following: 

• PE Uncertainty Model Unfalsification The PE un- 
certainty model 

y = Geu+F-1He{w+Au),  6 € 0,  ||to||rm, < a,  ||A|L < 7 

is unfalsified by the N-point data sequences (yN,uN) if 
and only if there exists 9 £ 0 and an N-point sequence 
wN = {u>(l), • • •, W(N)} such that: 

T(ee — w   )  T(ee - w   )    <    7 T(u   )  T(u   ) 

-vec(«,")Tvec(™N)    <    a2 

N ~ 

(25) 

From (23), the first inequality (25) is necessary and sufficient 
for the existence of an uncertain dynamic system ||A|L < 7 
which maps uN —► eg — wN. The second inequality in (25) 
is (obviously) necessary and sufficient for the existence of an 
N-point disturbance sequence satisfying    u; < c. 

<?s 



As shown in the recent text by Boyd et al. [2], the inequal- 
ities in (25) can also be expressed as matrix inequalities, e.g., 

7 T(uN)TT(uN)    T(e»-wN)T 

T(e? - w») 7 IN 

> 0 

<x ^vec(wN)T "> 

Tiv vec(^N) o- IN 

(26) 

>0 

For the general PE model structure, these matrix inequalities 
are affine in the unknown variables 7 € R+, a € R+, and 
\ec(wN) e RN, but not in the parameter 9 € Rp, except in 
the ARX case which we will discuss in the next section. 

Uncertainty Tradeoff Curve It is clear that for any 
given value of 7 there is a minimum value of <r, the disturbance 
bound, which is consistent with the data. For each dynamic 
uncertainty bound 7, denote this value by «7(7). The graph 
of a(-f) versus 7 establishes a tradeoff curve between model 
uncertainty, 7, and disturbance uncertainty <r. The curve also 
separates the unfalsified and falsified uncertainty models based 
on the current data. The curve (7(7) will be referred to as the 
unceretainty tradeoff curve. 

The general PE uncertainty tradeoff curve is obtained by 
solving the following optimization problem: 

• Unfalsified PE uncertainty Tradeoff Curve 

Fix 7 and perform the optimization: 

<r(7) min       <T,      subject to (26) (27) 
7, c, w 

Denote the minimizing values of 8 and wN by 0(7) and 
w"(7). 

Since ee   is not affine in 6 for the general PE structure, it 
follows that (27) is not a convex optimization and the tradeoff 
function, a(j), is therefore not necessarily convex in 7, but it 
is piece-wise continuous. 

The range of 7 values must also be determined. We will 
examine the specific properties of the tradeoff curve for the 
ARX uncertainty model. 

ARX Uncertainty Model The above result applies to 
unfalsification of the ARX uncertainty model (17) with 0 = 
Rp. However, in the ARX case, e^ is affine in 8. Hence, 
the matrix inequalities (26) become linear matrix inequalities 
(LMPs) in the unknown variables 7 £ R+, <r € R+, 8 £ 
Rp, and vec(iuN) £ RA\ Consequently, to find those (0, 7, a) 
satisfying (25) requires solving a convex feasibility problem 
[2]- 

The ARX uncertainty tradeoff curve is then obtained by 
solving the following convex optimization problem: 

• Unfalsified ARX uncertainty Tradeoff Curve 

Fix 7 and perform the optimization: 

"(7) min      <7, 
8,<r, wN 

subject to the LMPs in (26) (28) 

Denote the minimizing values of 8 and wN by 0(7) and 
wN{y). 

Since (28) is a convex optimization, it follows that the tradeoff 
function, (T(J), is convex in 7. The model uncertainty bound, 
7, can range between the two obvious extremes: when the 
prediction error is due only to the disturbance and when it is 
due only to the dynamic uncertainty. 

The first extreme point is when all the prediction error is 
assumed to be due to the disturbance, i.e., when 7 = 0. It 
follows from (28), that 7 = 0 if and only if wN = e^. Hence, 
we obtain the usual least-squares/ARX solution: 

<r(0)     =    „lä:=min|K||rms 

(29) 

0(0)    =    flu:=argmin||ej 
9 

N] 

Consequently, we can now provide yet another interpretation 
of least-squares: it produces the minimum variance unfalsified 
uncertainty model. Thus, no ARX model, Aey = Beu + F^w, 
can reproduce the data with a noise level ||«;||rms smaller than 

The second extreme point on the tradeoff curve is when all 
the prediction error is assumed to be due to the dynamic un- 
certainty, i.e., when a = 0. Let «7(7) = 0 where 7 is obtained 
by solving (28) with wN = 0. That is, 

7 = min   7,     subject to    T(e?)TT(eN) < y2T(uN)TT(uN) 

(30) 
It is not always the case that a solution exists for <r = 0. As 
will be shown later, there may be a non-zero lower bound, c, 
such that «7(7) = a for 7 > 7. In any case, the unfalsified 
tradeoff curve is given more explicitly by: 

Ml)  I 7 €[0,7]} (31) 

A consequence of the convexity of (7(7), is that the two extreme 
points establish the affine upper bound: 

<?<a) < Hi) ■= <n. (1 - 7/7),      0 < 7 < 7 (32) 

The figure below depicts a typical tradeoff curve separating 
unfalsified from falsified uncertainty models. 

Unfalsified 

Frequency-Domain Analysis 

The time-domain conditions for uncertainty model unfal- 
sification can be transformed into the frequency domain by 
application of the discrete-Fourier-transform (DFT). This will 
also provide further insight into the meaning of the tradeoff 
curve as well as providing an efficient means for computation. 
Discrete-Fourier-Tranform (DFT) Given an N-pomt 
time-domain sequence xN = {x(t)}?=1, define the function 
XN(U) by 

XN{u,):=^Y^x{t)e-^ (33) 

<K 
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The DFT of x    is defined as the w-point complex sequence 

{**(««)}£.! (34) 

where the ^-frequencies, u„ = 2j2-, n = 1,...,N are re- 
ferred to as the DFT frequencies. The time sequence, xN = 
M')}^!. is completely recoverable from the DFT via the in- 
verse transform: 

N 

x(t) = -^J2X»("»yU"lt>   <=!>•••." (35) 
»1 = 1 

ARX Tradeoff Curve The previous expressions are of 
course identical in form for the ARX uncertainty model, with 
the notable exception that all the indicated optimizations in- 
volve convex programming. 

Computational Issues The DFT approximations reveal 
some of the computational issues. First, with the ARX uncer- 
tainty model structure, the DFT approximations allow very 
rapid calculations to find the optimum [6]. However, it is well 
known that dividing the DFT of an output sequence by the 
DFT of an input sequence is a very noisy estimate of the sys- 
tem frequency response, e.g., [11, Ch.6]. But this is precisely 
what is suggested by the dynamic uncertainty constraint in 

Um  Amlx (-T(xN)TT(xN)) = sup Urn   \XN(u)\2    (36)    (39)"    HenCe' even though the calculations are rapid, they 
N-°° XN ' N~°° could give quite misleading results.   There are several ways 

to reduce the poor quality of this estimate.   It is standard 
practice to replace the DFT with spectral calculations, which 

/I        NT       N \ typically involve time and frequency window selection.  This 
Amax \NT

(
X
   )   T(X   V Ä mi

ax|X^(o;n)|2 (37)    brings us back to some of the earlier methods for caculating 
model error, e.g., [7]. We will not pursue this important prac- 
tical aspect any further here, but [12] provides the framework 
under which the spectral calculations would fit under the un- 
falsification umbrella. 

Relation of DFT and Toeplitz Form   The following 
result is established in [5]: 

where Amax denotes the maximum eigenvalue. Hence, for suf- 
ficiently large N, 

LTI Unfalsification The above approximation can be ap- 
plied to LTI unfalsification (23). It is shown in [6] that for 
sufficiently large N, the data sequences uN and zN unfalsify 
the LTI uncertainty model zN = AuN with HA^ < 7 if and 
only if, 

max 
UN(VTI) 

<7,      Afu := {n \ UN(un) ^ 0}       (38) 

PE Tradeoff Curve Let Ee,N{ton), UN(un), YN(wn), and 
WN(wn), denote the DFT's, respectively, of the w-point se- 
quences eg', uN, yN, and wN. The above approximation yield 
the following large-N approximation of (25): 

N 

max Ee,NJUn) - WN(wn) 

UN(U,I) < 7,    Yl I^C"»)!2 < s 
n=l 

(39) 
Consequently, the large-w approximation of the PE tradeoff 
curve reduces to: 

<r(y)2 « min J   ^ \Ee,N^n)\2 

+ E   (l^K)|--n{|§^i|,7}|^K)f 

Of course no approximation is needed for computing cr(0), 
which is precisely the least-squares solution, i.e., by Parseval's 
Theorem, 

N 

a(0f = a,2 = J2 \E6l„N^n)\2 (41) 
n=l 

In addition, the large-w approximation of the value of 7 for 
which o-(7) = 0, 7 from (30), is given by, 

7 a min max 
6    neMu 

Ee.NJUn) 

and the corresponding disturbance bound is not necessarily 
zero, i.e., 

~ (43) 

Iterative Unfalsified Robust Control 

In this section we provide a brief discussion on how to se- 
lect an uncertainty model on the tradeoff curve which is suit- 
able for control design. Because any uncertainty model corre- 
sponding to a point along the tradeoff curve is unfalsified by 
the current data record, it follows that a corresponding robust 
controller is also unfalsified by the current data record. Hence, 
a controller.can only be fahifiedby a new data record. How- 
ever, a new data record is obtained when the robust controller 
is implemented. This simple observation leads immediately 
to the following natural iterative unfalsification and robust 
control design procedure: 

• Unfalsification Based on the current finite data record, 
solve (28) for the unfalsified tradeoff curve. This step in 
the iterative procedure replaces the identification step. 

• Robust Control Design Corresponding to each fea- 
sible point, (7,(7(7)) on the tradeoff curve (31), design 
a robust controller, i.e., a controller which attains the 
best closed-loop performance possible for the given uncer- 
tainty model parameters. Hence, a family of unfalsified 
robust controllers are obtained which are parametrized by 
7, the model uncertainty bound, A large value of model 
uncertainty will yield a cautious control, and conversely, 
a small value of uncertainty will yield a more aggressive 
control. Since the family of robust controllers are based 
on the estimated tradeoff curve, there is no guaranty that 
any will perform as predicted. Hence, the controllers can 
only be falsified by real-time implementation.1 

• Real-Time Control Implementation The uncer- 
tainty "knob," 7, allows the unfalsified controllers to be 
implemented in real-time in a logical order, i.e., the first 
controller implemented should have a large uncertainty 

<r(7)2 SS min 5^ \Ee,N(i,n)\2 At this stage the methods of controller falsification proposed 
by Safonov et a/. [14, 17, 18] could be used to falsify candidate 
controllers before they are implemented. 
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setting. If the actual performance is better than the pre- 
dicted performance, then the controller (and the under- 
lying uncertainty model) are still unfalsified. In this case, 
the controller can be made more aggressive by gradually 
decreasing the uncertainty level until either: 

- a desired closed-loop performance is achieved. 

- actual performance is worse than the predicted per- 
formance. 

If the first condition occurs, controller design iterations 
cease and performance is still monitored until the sec- 
ond condition occurs, if ever. If the second condition 

occurs, the controller (and the underlying uncertainty 
model) have been falsified. In this case, the closed-loop 

data can be used to generate a new estimate of the un- 
falsified family of tradeoff curves. If these new curves are 

not significantly different than the previous curves, then 

more and more data can be used with perhaps more vig- 

orous probing signals. If this fails, then the uncertainty 
model can be modified in a number of ways.e.p., increase 
the nominal (ARX) model order, reshape or change the 

bandwidth of the data filter, modify input spectra, etc. 

It is certainly conceivable that performance cannot be further 
improved because the limit of performance has been achieved. 
But this cannot be known without knowing the system in the 
first place. It is also possible that more fundamental changes 
must be made to the uncertainty model. For example, im- 
posing an RMS bound on the disturbance uncertainty may be 
too restrictive. This can be relaxed by adding the constraint 
that the disturbance is uncorrelated with the input - as would 
be the case for stochastic signals. This is easily added to the 
tradeoff optimization problem via the convex constraint: 

(wNfuN = 0 

The disturbance can be completely altered by postulating a 
set of disturbances with bounded spectrum (see [12, 6]) and 
including the above constraint as well. 

Stochastic sets are also possible, and again these would lead 
to convex optimization problems where now there would be a 
"probability tag" associated with the family of tradeoff curves 
and corresponding robust controllers. 

Finally, failing all else, if the designer is "convinced" that 
the limit of performance has not been achieved, then it is pos- 
sible that the underlying linear system assumption is wrong. 
That is, a linear model cannot capture some nonlinear phe- 
nomena that was presumed to be negligible, but is actually sig- 
nificant, and is hindering further performance improvement. 
In this case, there is strong motivation to re-think the physical 
modeling assumptions and to conduct experiments with small 
signal perturbations about nearby operating points to see if 

the tradeoff curves vary significantly. If so, this also suggests 
that there is an important nonlinear effect which should be ac- 
counted for directly in the control design,e.g., gain scheduling, 
feedback linearization, etc. 
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A.8      Iterative adaptive control via uncertainty model unfalsification 

■ R. L. Kosut invited session, 1996 IFAC World Congress, San Francisco, CA, June 1996. 
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Iterative Adaptive Robust Control via Uncertainty Model Unfalsification 
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Abstract - Unfalsification replaces system identification when the intended use of the model 

is robust control design. Unfalsification results in a family of uncertainty models, all consistent 

with the data, which tradeoff model uncertainty and disturbance uncertainty. The family of 
unfalsified models is used in an iterative approach to system identification and robust control 

design. 

1 Introduction 

"The test of all knowledge is experiment. Experiment 
is the sole judge of scientific 'truth.' But what is the 
source of knowledge? Where do the laws that are to be 
tested come from? Experiment, itself, helps to produce 
these laws, in the sense that it gives us hints. But also 
needed is imagination to create from these hints the great 
generalizations - to guess ... and then to experiment to 
check again whether we have made the right guess." 

- Richard P. Feynman [3, Vol. I] 

Applying Feynman's inspirational description of the 
Scientific Method to the problem of finding a model from 
data gives the algorithm: record data, pick a model, vali- 
date the model, if the model is no good pick a new model, 
validate the new model with new data, and so on. It is 
helpful of course, as Feynman puts it, to use one's "imag- 
ination" to arrive at "the great generalizations." For the 
problem addressed here, this means pick a model which is 
sufficiently accurate for use in control design. This paper 
is about how to do that. 

The work described here is a continuation of [6] which 
addressed the problem of how uncertainty model unfal- 
sification, as first described by Poolla et al. [13], could 
be used to replace the system identification step in adap- 
tive control. In this paper the connection between ro- 
bust control and unfalsification is made more precise. An 
iterative adaptive robust control algorithm is presented 
which incorporates the model falsification of Dahleh et 
al. [2, 9], the controller falsification approach of Safonov 
et al. [14], and some elements of the "windsurfer" adap- 
tation devised by Anderson and Kosut as explained in 
[7, 8].  Due to limited space, the contributions of these 

and other references will be cited as needed in the text 
- a more complete listing and discussion can be found in 
[6], which is briefly reviewed in the next section. 

2 Uncertainty Modeling 

The starting point for robust control design is an un- 
certainty model which accounts for parametric, dynamic, 
and disturbance uncertainty. The specific form consid- 
ered here (described in detail in [6]) is referred to as a 
prediction error (PE) uncertainty model: 

(     eee 
y = Geu + He(w +An)   {    \\w\\rms < a (1) 

I l|A||HoD < * 
where y and u are, respectively, the observed output and 
input sequences, w is an uncertain sequence rms-bounded 
by <r, A is an uncertain transfer function Hoo-bounded by 
8, Ge and H$ are causal, linear-time-invariant systems, 
initially at rest, with transfer functions Ge(z) and He(z), 
each dependent on a parameter vector 6 in the set, 

0 = {0 e W | Hg1 and H^Ge are stable }       (2) 

Parameters in 0 insure that the predictor associated with 
(1) is stable [11], i.e., 

ee := Hj\y - Geu) (3) 

Observe that the PE uncertainty model (1) is character- 
ized by three types of parameters, (6, er, 6) - the standard 
PE model is characterized by two types of parameters, 
(6,a). 

•Research supported by the Air Force Office of Scientific Re- 
search, Directorate of Mathematical & Computer Sciences, under 
Contract No. F49620-93-C-0012. 
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3 Unfalsification 

For robust control design, the parameters (0, a, 6) are 
known. In some cases 6 can also be uncertain,i.e., known 



only to be in a subset of 0. This is important particu- 
larly if 6 represents uncertain physical parameters. In this 
paper we restrict attention to the problem of estimating 
(6, <r, 6) from data. Hence, 6 are used here as canonical 
parameters only to define a center for the uncertainty set. 

Classical system identification is not the solution. It 
poses an optimization problem in (0,6), and it does not 
deal with the dynamic uncertainty ||A||JJ < 6, which is 
of critical importance for robust control. 

In contrast, a model is said to be validated if and only 
if it could have produced the data. Validation is perhaps 
a misnomer, as one can never prove that a model will be 
able to accurately predict the future. More precisely, and 
perhaps closer to Feynmans thoughts, the data can falsify 
a model, i.e., the model may prove to be incapable of fully 
explaining the experiment. Hence, instead of validation, 
we use the more precise, but awkward term: unfalsifica- 
tion. 

Clearly unfalsification is a feasibility problem - find a 
the model set whose members are consistent with the 
data. As shown in [6, 13], this philosophical shift al- 
lows the dynamic uncertainty bound 8 to be estimated 
(unfalsified) along with 6 and <r. 

Specifically, let uN and j/" denote, respectively, input 
and output data which have been recorded at N integer 
sample times t = 1 : N, that is, 

yN = {y(t))ti,    «N = M<)}£i (4) 

Let e^  denote the corresponding prediction error se- 
quence, i.e., 

= H^(yN-Geu
N) (5) 

Unfalsification is defined as follows [6, 13]. 
• Unfalsification 

The uncertainty model (1) is said to be unfalsified 
by the N-point data sequences (y/*, uN) if and only 
if there exists 6, A(z), and an yv-point sequence wN, 
such that: 0 £ 0, ||A||H < 6, ^w»^ < a, and 
(1) is consistent with the data, i.e., 

„N „N + Au N (6) 

The following data dependent test of unfalsification is 
taken from [6], and is derived from the results in [13]. 

• PE Uncertainty Model Unfalsification The PE 
uncertainty model (1) is unfalsified by the N-point 
data sequences (y1* ,uN) if and only if there exists 
0 € 0 and an Ar-point sequence wN such that: 

T(e? - wN)TT(e? - wN)   <   62T(uN)TT(uN) 

(7) 

N 
vec(wN)Tvec(wN)    <    a2 

where T(-) maps an TV-point sequence into an N x N 
lower triangular Toeplitz matrix , e.g., 

T(u JV\ 

«(1) 0 •      0 

"(2) «(1)       • 

U(N) U(N - 1)    • 
0 

•   "(1) 

(8) 

As shown in [6], an uncertainty tradeoff curve is obtained 
by solving the following optimization problem: 

• Unfalsified Tradeoff Curve 

Fix 8 and perform the optimization: 

o~(8) :=    min      er, 
e,<r,wN 

subject to (7)        (9) 

Denote the minimizing values of 9 and wN by 6(6) 
and wN(6). 

Remarks 
(1) The graph of cr(6) versus 6, referred to as the un- 

certainty tradeoff curve, establishes the tradeoff between 
model uncertainty, 6, and disturbance uncertainty a. To 
every point on the tradeoff curve there is a different set 
of nominal transfer functions (Go,H$) because 6 = 0(6). 

(2) The tradeoff curve separates the unfalsified and fal- 
sified uncertainty models based on the current data. (Fig- 
ure 1 shows a typical tradeoff curve for the ARX uncer- 
tainty model). Solutions in the unfalsified (feasibility) 
set may not be unique. In addition, there is no easy 
parametrization, and attempts to discretize the space 
may lead to huge dimensions even for a few parameters. 

(3) Let (6,a, 6) denote the parameters of the uncer- 
tainty model (1) satisfying (7). This is essentially a fea- 
sibility set because all that is required is the existence of 
(A,w,6) such that e^ = w + AuN, a(6) < \\w\\rms < a 
and ||A||Hoo < ,5. 

(4) The model uncertainty bound, 6, can range between 
the two extremes: when the prediction error is due only 
to the disturbance (6 = 0) and when it is due only to the 
dynamic uncertainty (a = 0). In the latter case, 

min 6 
0 

subject to 

T(e?)TT(e?) < 62T(uN)TT(uN) 

(10) 

Unlike the whole of the unfalsified region, uncertainty 
models along the tradeoff curve are easily parametrized, 
i.e., 0(6),cr(6)0<6j0. 

(5) For the special case when 6 = 0, the corresponding 
uncertainty model on the tradeoff curve defined by the 
parameter triple (0(0), <x(0), 0) is precisely the usual least- 
squares prediction error transfer function estimate. 
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(6) In general, the tradeoff curve is not convex because 
eg is not affine in 6 except in the ARX case, which is 
described below. 

(7) Notice that no mention has been made about the 
"true" system which generated the data - it need not 
be linear. All that is claimed is that there exists a set 
of linear uncertainty models, each of which could have 
produced the data. 

ARX Uncertainty Model The ARX model is the 
most widely used model structure for standard system 
identification [11]. In this case: 

Ge(z) = 

A»(z) = 

Be(z) = 

6 = 

Be{z) He{z) 
1 

Ae(z)'     '""-'     F{z)Ae{z) 

l + O!*-1 + --- + anz~nA 

b1z-
1 + --- + bnz~nB 

[ai---a„Ab1---b„B]T eW,   p = nA+nB 

where F(z) is the data filter included as part of the noise 
model He(z). Hence, the (filtered) ARX prediction error, 

ee = F(Aey - Bsu) (11) 

is affine in 6, from which it follows that 0 = Rp, the 
tradeoff curve <r(8) is convex in 6, and the optimizing 
values 6(8) and wN(S) are unique. Of practical impor- 
tance is that the optimization problem (9) is now convex 
because the matrix inequalities (7) become linear matrix 
inequalities (LMI's) in the unknown variables 8 G R+, 
a G R+, 6 G Rp, and vec(wN) £R". As shown in [1], 
(7) can also be expressed as 

8 T(uN)TT(uN 

T(e» - wN) 

T(e N ,.N\T 

—vec(wN) VN 

8 IN 

jwvec(w»)T 

o- IN 

>0 

>0 

^ls 

(12) 

Unfalsified 

Figure 1: ARX Tradeoff Curve 

would be the case for stochastic signals. These are easily 
incorporated in computing the tradeoff (9) by adding the 
linear constraints: 

zero-mean: ±£>(*) = 0 (13) 

1   N 

independence: — ^ w(t)u(t) = 0      (14) 
t=i 

This expression more clearly exposes the LMI structure 
when e$ is affine in 6. 

ARX Tradeoff Curve Figure 1 depicts a typical ARX 
uncertainty model tradeoff curve separating unfalsified 
from falsified uncertainty models. 

Additional Constraints Imposing only an rms bound 
on the disturbance uncertainty may be too harsh, result- 
ing in unrealistic (malicious) disturbances. A more real- 
istic situation is obtained by restricting the disturbance 
to be a zero-mean sequence independent of the input - as 

Alternately, the disturbance can be completely character- 
ized by bounding it's spectrum (see [12]). 

Stochastic dynamic uncertainty descriptions as in [5] 
would lead to convex optimization problems where now 
there would be a "probability tag" associated with the 
family of tradeoff curves and corresponding robust con- 
trollers. 

4 Unfalsified Robust Control 

A robust control can be designed for every unfalsified 
uncertainty model and then a new closed-loop experiment 
can be run "to check again ..." But, as already remarked, 
the set of unfalsified uncertainty models satisfying (7) is 
too large for practical purposes. Therefore, candidate un- 
certainty models for robust control design will be chosen 
from among those along the tradeoff curve, i.e., (1) with 
the parameter set {6(6),<r(6) | 0 < 8 < 80} found from 
(9). To emphasize that the candidate uncertainty models 
are unfalsified, as well as simplifying notation, let 

Gunf := Gf(i),    Hunf := He(t) (15) 

Let r denote the reference command and let, 

u = Kunf (r - y) (16) 

be an unfalsified robust controller, that is, Kanf stabilizes 
the candidate unfalsified uncertainty model. Hence, the 
closed-loop transfer functions, 

Gimf-Kunf ^> ^unf 
^unf := 

1 + Gunf Äunf 
Q unf 

1 + GUnf -Kunf 
(17) 

103 



•Sunf  :—  *       Ainfi  -Sunf/funf, 5UnfGUnf, and Qunf-Hunf are 
all stable. In addition: 

6 HQunf #unf ||Hoo < 1 (18) 

Recall that this condition is necessary and sufficient to 
insure stability of the closed-loop unfalsified uncertainty 
model for all ||A||JJM < 6. However, it is neither nec- 
essary nor sufficient for determining if Kan{ will actually 
stabilize the true system. Recall Feynman's words: "Ex- 
periment is the sole judge of scientific 'truth.' " So until 
we perform an experiment with Kmf as the controller, 
we cannot know if it is stabilizing even if (18) is false. 
However, there is a sensible order in which to experiment 
with candidate controllers, and as shown by Safonov et 
al. [14], some of them can be eliminated (falsified) with- 
out running a new experiment. We will return to this in 
the next section. 

If there was no uncertainty in the model (w = 0, A = 
0), then the nominal unfalsified closed-loop response 
would be TunfT\ Non-zero disturbance and dynamic un- 
certainty yields the unfalsified closed-loop performance er- 
ror. 

eUnf    :=    y - Tunf r 

—       ( SuntQuntHunfA\ 

(19) 

■->unf "unf 
W 

.l + Qunf#unfA 

The above expression can be thought of as an unfalsified 
uncertainty model of the closed-loop system performance 
error. 

Under the assumptions that uncertainty (A, w) can be 
drawn from the sets ||A||Hoo < 6 and ||w||rms < a(6), 
and if (18) holds, then the unfalsified closed-loop system 
satisfies the following condition: 
Vn> 1 and V||r"| < oo, 

leunfllrms — "Minf(-*unf i ** 

where 

J»nt(T,r)    := 

Tunf     : = 

Tunf ||rr. 

6 

rms "+" aunf 

SunfQunf.flunf/Punf]m 

"unf    :=    o-(6) 

1 " S\QuntHmt\ 

'-'unf "unf 

H„ 

1 - 6\QunfHunf I H0 

where [Tunf]m is the minimum phase factor of Tunf. The 
same caution regarding (18) applies here as well: there 
is no guaranty that (20) holds when a closed-loop exper- 
iment is run with Kunt- 

5 Uncertainty Model Falsification 

As shown in [9], if (20) does not hold with data from 
a new closed-loop experiment with Kunt, then the uncer- 

tainty model associated with Kun[ is falsified by the new 
data. More precisely: 

• Model Falsification 

Perform a closed-loop experiment with control Kun{ 

and record new data (y?xpt>u?xpt,r?xpt), and 

cexpt — »expt       -'unf'^xpt \^l) 

If 3n E [1 : N] such that: 

lle"xpt||rms>J«nf(^nf,re"xpt) (22) 

then the uncertainty model for which .ftTunf has been 
designed is falsified by the new data. 

Remarks 

(1) A more informative expression signifying (22) is: 
the controller is falsified by the new data with respect to 
the performance criterion (SO). 

(2) The data used for unfalsifying the uncertainty 
model used in the design of Kun{ is different than data 
taken from the experiment with Kunt in the loop. Hence, 
if (22) holds then the new data set, which has falsified 
the previously unfalsified model, can be used to compute 
a new tradeoff curve. This observation suggests an itera- 
tive procedure for adaptive control and will be discussed 
in a later section. 

(3) It is possible that (22) holds, i.e., the uncertainty 
model is falsified by the new data, but performance sat- 
isfies a desired specification. For example, suppose (22) 
holds and Vn G [1 : JV], 

||e"xpt I,™ < ^spec(Tunf,reXpt) 

(20)    where 

JsPec(r,r):=7spec||rr||rms + al spec 

(23) 

(24) 

In this case the experiment provides a proof that the 
controller Kun{ meets a desired specification, at least 
for one sequence r£pt. If this sequence is sufficiently 
rich in spectral content, it is highly unlikely that further 
experimentation is required to falsify Kun( with repect 
to /spec(rUnf,r). However, a different unfalsified model 
could still result in better performance - this has not been 
ruled out. 

(4) The above experimental validation (falsification) of 
the controller Kunf is indirect, because the controller is 
designed from an unfalsified uncertainty model. This can 
lead to a possibly wide gap between unfalsified predicted 
performance and actual performance. It is possible to 
directly falsify controllers without having to try them out 
on the actual system. This is described next. 
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6 Controller Falsification 
In a series of papers by Safonov et al. (see [14] and 

the references therein), it is shown how to directly fal- 
sify a candidate controller before it is implemented. This 
is a significant result, because time consuming and un- 
necessary experimentation is eliminated. The procedure 
for controller falsification is essentially the same as that 
for uncertainty model unfalsification, but applied to the 
controller. What is different is that the "model" now be- 
comes the controller, and the "uncertainty" becomes the 
closed-loop specification. 

Specifically, suppose we are given data (t/' ,uN) and 
want to know, without additional experimentation, if the 
candidate controller Kun{ will fail to meet a desired 
closed-loop specification. A simplified version of the pro- 
cedure described in [14] is as follows. 

• Controller Falsification 

A candidate controller Kunt, designed for an uncer- 
tainty model unfalsified by the data (y1* ,uN), is falsi- 
fied with repect to performance JSpec(Tun{, r) if Br^j 
satisfying 

uN = /<unf (r^, - y") (25) 

and 3n € [1 : N] such that, 

lkEad!lrms>^pec(Tunf,rCad) (26) 

with 
N N      rr        N 

Cbad := V    - ^unf rbad 
(27) 

Remarks 
Controller falsification is a feasibility problem in the 

variable r^. Solving for rgad from (25) gives, 

r&a =*"+*->" (28) 

Using (17) gives, 

<&d    =    Sun{ (y
N - Gun(u

N) (29) 

Tunrr^    =    y" - San<(yN - GunIu
N) (30) 

Observe that (SunC-SunfGunf) are stable by construction 
(17), hence, e^.r^, are bounded even though Hr&J^ 
could be very large. 

It can be shown that ebad is precisely the performance 
error that would have been obtained had the controller 

U - Kunf(fbad - V) (31) 

been applied to the unfalsified uncertainty model for 
which Kunf is designed. As a result, using (20), 

||ebad||rms < ■/unfOFunCfbad), (32) 

The practical consequence is this: falsification [with 
repect to <7Unf(T'unf,'")] of the controller (26) implies fal- 
sification of the model (22). This reinforces the notion 
expressed by Safonov et al. [14] that direct controller 
falsification is a sharper test than the indirect approach 
using model falsification (22). 

7 Iterative Adaptive Control 

The preceding discussion of model and controller falsi- 
fication suggests a "natural" iterative approach to adap- 
tive control. The idea is to verify, ultimately by experi- 
ment, the performance of all robust controllers designed 
for the family of unfalsified uncertainty models along the 
6-dependent tradeoff curve. The unfalsified controllers 
should be either falsified or implemented in decreasing 
order of 6, i.e., the first controller implemented should be 
a cautious controller with a large uncertainty setting. . 
More precisely, the control can be iteratively adapted by 
adhering to the following steps: 

1. initialize performance specification 

Jspec\T, r) = 7sPec \\Tr\\Tms + «spec 

2. record new w-point batch of data 

\V   >u    )r    ) = \y    .u    .r    jbatch 

3. compute tradeoff parameters 

use (9) with (j/iV,uN) to obtain: 

{9(6),a(6) \0<6<60} 

4. start with cautious controller 

set 6 = 6Q 

5. robust control design 

(a) design controller Kunf 
(b) compute JUnf(?unf,f) from (20) 

6. controller falsification 

if (26) holds, i.e., 

3",   HeEadllrms > Jspec(runf,rbad) 

then GO TO Step 10 

7. new experiment &c record data 

(a) implement Kun{ 
(b) record closed-loop data y£pt.u£pt.r«pt 

8. evaluate performance 

if (26) holds, i.e., 

3"i   ||eexpt||rms > >'spec(-*unf,rexpt) 

then: 
(a) reset to last controller satisfying JSpec 
(b) replace (j/W") with (y* ,uN,rN)expt, and 
GO TO 3. 
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9. model falsification 

if 

3«, ||cScpt|L,>Junf(Tunf>r»xpt) 

then replace (y", uN, rN) with (yN ,uN ,rN)expU and 
GO TO 3 
else, if Junf < Jspec, then replace Jspec with Junf. 

10. decrease 6 

if 6 = 0, GO TO Step 2 
else, decrease 6 and GO TO Step 5 

Remarks 
(1) The algorithm falsifies and/or implements con- 

trollers along a tradeoff curve, and when these are ex- 
hausted, a new batch of data is recorded and the process 
is repeated. Controllers are implemented only when they 
fail to be falsified by current data with respect to the best 
observed performance. 

(2) In each new experiment the reference command 
rexpt can consist of a nominal sequence, such as a step 
or square-wave, plus a small random component which 
could be added to the test reference and/or directly to 
the control input. Just as in classical system identifica- 
tion, a sufficiently rich excitation is required to obtain 
useful estimates, e.g., [11, 4]. 

(3) For each unfalsified model the controller can be de- 
signed in any number of ways, and moreover, there are 
many possible robust controllers. For example, the prob- 
lem formulation suggests a mixed H^/H«-optimization, 
but that involves choices of weightings, all of which effect 
Tunf, the nominal response to a reference. A more direct 
approach is suggested in [7, 8] where 

Qunf = T\/[Gunf]r (33) 

where [Gunf]m denotes the minimum-phase factor of Gunf, 
and T\ is the desired (minimum phase) closed-loop trans- 
fer function from r to y with bandwidth A. The conve- 
nience of this approach is that the two important design 
"knobs" are directly accessible, namely, model error 6 and 
desired closed-loop bandwidth A. 

(4) A large value of model uncertainty 8 together with 
a low bandwidth A will yield a cautious control. Con- 
versely, a small value of uncertainty 6 together with a 
large bandwidth A will yield a more aggressive control. 
If, in addition, T\ is used as the data filter when pro- 
ducing the tradeoff models, then it becomes easier to link 
unfalsified models with the desired performance.This ad- 
ditional degree of design freedom is easily added to the 
iterative algorithm. 

Concluding Remarks 

An iterative approach to robust adaptive control has 
been  proposed  where unfalsification of an uncertainty 

model replaces classical system identification. For the 
ARX model, the unfalsification step requires solving a set 
of convex programming problems, specifically LMI prob- 
lems, of which ordinary least-squares is one member. The 
result is a tradeoff curve between model uncertainty and 
disturbance uncertainty. Hence, a family of models are 
unfalsified from the data record. A natural order of de- 
sign is to start with a cautious controller designed for an 
unfalsified uncertainty model with a large value of dy- 
namic uncertainty. As the model uncertainty is slowly 
decreased, actual closed-loop data is used to evaluate (un- 
falsify or falsify) the model and/or the controller. 
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